scholarly journals Powerful fermentative hydrogen evolution of photosynthate in the cyanobacterium Lyngbya aestuarii BL J mediated by a bidirectional hydrogenase

2014 ◽  
Vol 5 ◽  
Author(s):  
Ankita Kothari ◽  
Prathap Parameswaran ◽  
Ferran Garcia-Pichel
2005 ◽  
Vol 52 (1-2) ◽  
pp. 21-29 ◽  
Author(s):  
P.C. Hallenbeck

The molecular details behind hydrogen evolution during fermentation are reviewed. Hydrogen is evolved by hydrogenase, a class of enzymes containing complex metallo-centers. In most cases, sugars are degraded to pyruvate which in turn is converted to a variety of fermentation products. Various pathways leading to fermentative hydrogen generation are outlined and discussed. Thermophilic fermentations have higher yields than mesophilic ones. Yields are thought to be limited to 4H2 per glucose under standard conditions. The highlights of some actual studies of fermentations are presented and ways of potentially increasing hydrogen yields are discussed. It may be possible to achieve higher hydrogen yields by carrying out fermentations under microaerobic conditions where limited respiration could provide additional reducing power to drive the nearly complete conversion of sugar substrates to hydrogen.


2014 ◽  
Vol 16 (11) ◽  
pp. 4716-4727 ◽  
Author(s):  
Gergely Lakatos ◽  
Zsuzsanna Deák ◽  
Imre Vass ◽  
Tamás Rétfalvi ◽  
Szabolcs Rozgonyi ◽  
...  

The association of photosynthesizing Chlamydomonas algae and actively respiring bacterial partners represents an alternative, efficient and sustainable approach for biohydrogen generation.


2021 ◽  
Author(s):  
Minmin Wang ◽  
Mengke Zhang ◽  
Wenwu Song ◽  
Weiting Zhong ◽  
Xunyue Wang ◽  
...  

A CoMo2S4/Ni3S2 heterojunction is prepared with an overpotential of only 51 mV to drive a current density of 10 mA cm−2 in 1 M KOH solution and ∼100% of the potential remains in the ∼50 h chronopotentiometric curve at 10 mA cm−2.


Nanoscale ◽  
2020 ◽  
Vol 12 (39) ◽  
pp. 20413-20424
Author(s):  
Riming Hu ◽  
Yongcheng Li ◽  
Fuhe Wang ◽  
Jiaxiang Shang

Bilayer single atom catalysts can serve as promising multifunctional electrocatalysts for the HER, ORR, and OER.


2020 ◽  
Vol 8 (35) ◽  
pp. 18207-18214
Author(s):  
Dongbo Jia ◽  
Lili Han ◽  
Ying Li ◽  
Wenjun He ◽  
Caichi Liu ◽  
...  

A novel, rational design for porous S-vacancy nickel sulfide catalysts with remarkable catalytic performance for alkaline HER.


2020 ◽  
Vol 8 (44) ◽  
pp. 23323-23329
Author(s):  
Jing Hu ◽  
Siwei Li ◽  
Yuzhi Li ◽  
Jing Wang ◽  
Yunchen Du ◽  
...  

Crystalline–amorphous Ni–Ni(OH)2 core–shell assembled nanosheets exhibit outstanding electrocatalytic activity and stability for hydrogen evolution under alkaline conditions.


2020 ◽  
Author(s):  
Elisabeth Hofmeister ◽  
Jisoo Woo ◽  
Tobias Ullrich ◽  
Lydia Petermann ◽  
Kevin Hanus ◽  
...  

Cobaloximes and their BF<sub>2</sub>-bridged analogues have emerged as promising non-noble metal catalysts for the photocatalytic hydrogen evolution reaction (HER). Herein we report the serendipitous discovery that double complex salts such as [Co(dmgh)<sub>2</sub>py<sub>2</sub>]<sup>+</sup>[Co(dmgBPh<sub>2</sub>)<sub>2</sub>Cl<sub>2</sub>]<sup>-</sup> can be obtained in good yields by treatment of commercially available [Co(dmgh)<sub>2</sub>pyCl] with triarylboranes. A systematic study on the use of such double complex salts and their single salts with simple counterions as photocatalysts revealed HER activities comparable or superior to existing cobaloxime catalysts and suggests ample opportunities for this compound class in catalyst/photosensitizer dyads and immobilized architectures. Preliminary electrochemical and spectroscopic studies indicate that one key advantage of these charged cobalt complexes is that the reduction potentials as well as the electrostatic interaction with charged photosensitizers can be tuned.


2018 ◽  
Author(s):  
Rituja Patil ◽  
Aayush Mantri ◽  
Stephen House ◽  
Judith C. Yang ◽  
James McKone

We have studied the composition and morphology of Ni-Mo alloys. These alloys consist of a Ni-rich core surrounded by Mo-rich oxide layer. The HER activity of Ni-Mo alloys was seen to be limited by interfacial resistance rather than kinetic and solution transport. Vulcan carbon, a conductive support mitigate the resistive limitations by providing conductive percolation networks.


Sign in / Sign up

Export Citation Format

Share Document