scholarly journals Characterization of Influenza A Virus Infection in Mouse Pulmonary Stem/Progenitor Cells

2020 ◽  
Vol 10 ◽  
Author(s):  
Tai-Ling Chao ◽  
Sing-Yi Gu ◽  
Pi-Han Lin ◽  
Yu-Tien Chou ◽  
Thai-Yen Ling ◽  
...  
2013 ◽  
Vol 87 (15) ◽  
pp. 8272-8281 ◽  
Author(s):  
N. S. Heaton ◽  
V. H. Leyva-Grado ◽  
G. S. Tan ◽  
D. Eggink ◽  
R. Hai ◽  
...  

2001 ◽  
Vol 82 (7) ◽  
pp. 1749-1755 ◽  
Author(s):  
Sophie Tourdot ◽  
Shan Herath ◽  
Keith G. Gould

Influenza A virus infection of mice has been used extensively as a model to investigate the mechanisms of antigen presentation to cytotoxic T lymphocytes (CTL) and the phenomenon of immunodominance in antiviral CTL responses. The different virus-encoded epitopes that are recognized in H-2b and H-2d mice have been characterized and their relative immunodominance has been well-studied. In H-2k mice, four different Kk-restricted influenza virus epitopes have been described, but the dominance hierarchy of these epitopes is unknown and there is also an uncharacterized Dk-restricted response against the virus. In this study, a Dk-restricted epitope derived from the influenza virus A/PR/8/34 polymerase protein PB1, corresponding to amino acid residues 349–357 (ARLGKGYMF), was identified. This peptide is the major epitope within the PB1 polymerase and is at least as dominant as any of the four Kk-restricted epitopes that are recognized in CBA mice following primary influenza virus infection. The PB1 epitope is only the fourth Dk-presented peptide to be reported and the sequence of this epitope confirms a Dk-restricted peptide motif, consisting of arginine at position two, arginine or lysine at position five and a hydrophobic residue at the carboxy terminus.


Cell Reports ◽  
2021 ◽  
Vol 35 (7) ◽  
pp. 109159
Author(s):  
Xiaoyuan Bai ◽  
Wenxian Yang ◽  
Xiaohan Luan ◽  
Huizi Li ◽  
Heqiao Li ◽  
...  

2007 ◽  
Vol 88 (10) ◽  
pp. 2627-2635 ◽  
Author(s):  
Alexey A. Matskevich ◽  
Karin Moelling

In mammals the interferon (IFN) system is a central innate antiviral defence mechanism, while the involvement of RNA interference (RNAi) in antiviral response against RNA viruses is uncertain. Here, we tested whether RNAi is involved in the antiviral response in mammalian cells. To investigate the role of RNAi in influenza A virus-infected cells in the absence of IFN, we used Vero cells that lack IFN-α and IFN-β genes. Our results demonstrate that knockdown of a key RNAi component, Dicer, led to a modest increase of virus production and accelerated apoptosis of influenza A virus-infected cells. These effects were much weaker in the presence of IFN. The results also show that in both Vero cells and the IFN-producing alveolar epithelial A549 cell line influenza A virus targets Dicer at mRNA and protein levels. Thus, RNAi is involved in antiviral response, and Dicer is important for protection against influenza A virus infection.


2012 ◽  
Vol 206 (4) ◽  
pp. 495-503 ◽  
Author(s):  
Jie Zhou ◽  
Kelvin Kai-Wang To ◽  
Hui Dong ◽  
Zhong-Shan Cheng ◽  
Candy Choi-Yi Lau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document