scholarly journals Transient Neonatal Diabetes Mellitus in SHORT Syndrome: A Case Report

2021 ◽  
Vol 9 ◽  
Author(s):  
Shin-Hee Kim ◽  
Minsung Kim ◽  
Jisook Yim ◽  
Myungshin Kim ◽  
Dae-Hyun Jang

SHORT syndrome is a rare autosomal dominant disorder characterized by multiple congenital defects and is historically defined by its acronym: short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay. Herein, we report a male infant with SHORT syndrome who presented with transient neonatal diabetes mellitus (TNDM) with insulin resistance. The proband was born at 38 weeks of gestation but displayed facial dysmorphic features. Intrauterine growth restriction (IUGR) was detected on a prenatal ultrasonography test. His birth weight was 1.8 kg (<3rd percentile), length 44 cm (<3rd percentile), and head circumference 31 cm (<3rd percentile). The patient's blood glucose level started to increase at 5 days of age (218–263 mg/dl) and remained high at 20 days of age (205–260 mg/dl). He was treated with subcutaneous insulin and the blood glucose level gradually stabilized. Blood glucose level was stabilized over time without insulin treatment at 6 weeks of age. Clinical exome sequencing showed a heterozygous pathogenic variant, NM_181523.3:c.1945C>T (p.Arg649Trp) in exon 15 of the phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) known as the causative gene for SHORT syndrome. Examination of the patient at 10 months of age revealed no hyperglycemic episode and glycated hemoglobin level was 5.2%. To the best of our knowledge, this is the first case of TNDM in SHORT syndrome due to a pathogenic variant of PIK3R1. We believe that our case can aid in expanding the phenotypes of SHORT syndrome.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Moon Bae Ahn ◽  
Yoon Ji Lee ◽  
Na Yeong Lee ◽  
Seul Ki Kim ◽  
Shin Hee Kim ◽  
...  

Abstract Background: Neonatal diabetes mellitus (NDM) occurs within the first 6 months of life. Advances in molecular genetics have identified various causatives genes. Mutations in EIF2AK3 causes Wolcott-Rallison syndrome characterized by NDM, multiple epiphyseal dysphasia and growth retardation. PTF1A is associated with the development of pancreas and cerebellum. Both EIF2AK3 and PTF1A mutations are causative genes for permanent NDM with spontaneous and autosomal recessive inheritance. We report a neonate with transient NDM with both EIF2AK3 and PTF1A variants confirmed by Sanger sequencing where each parent found to be a heterozygous carrier of each mutation. Case presentation: A two-day old boy was transferred from a local hospital due to hyperglycemia (blood glucose of 385 mg/dL) and glycosuria. Serum c-peptide (0.06 ng/mL) and insulin (0.64 μU/mL) were low. The patient did not present sings of ketoacidosis and was screened negative for pancreatic autoantibodies. The patient did not have any family history of diabetes. Molecular genetic analysis was performed and continuous infusion of intravenous insulin with pre-prandial bolus was started. Oral sulfonylurea therapy was attempted to prevent adverse neurocognitive outcome however, it showed no response and unable to stabilize blood glucose level. Targeted panel sequencing identified two different novel variants: a heterozygous missense mutation (c.3272G>T) in exon 17 of EIF2AK3 gene and heterozygous missense mutation (c.53C > T) in exon 1 of PTF1A gene; both of which have not been previously reported and were no likely pathogenic variants. The patient’s father confirmed to be heterozygous carriers of the EIF2AK3 mutation while mother being heterozygous carriers of the PTF1A mutation. Blood glucose level gradually began to stabilize with insulin therapy, and upon discharge the patient switched to continuous subcutaneous insulin infusion (pump) with continuous glucose monitoring. Conclusions: NDM caused by in combination of EIF2AK3 and PTF1A gene mutation is a rare condition and could resemble the disease progress of transient form of NDM. Although hyperglycemia might not be an issue of lifelong period, early genetic screening and prompt insulin initiation with consistent glucose monitoring are able to prevent further diabetic complications. In addition, the result of genetic testing in our patient raises the possibility of NDM as polygenic form of diabetes.


2009 ◽  
Vol 31 (4) ◽  
pp. 816-820 ◽  
Author(s):  
Lindsey A. Loomba-Albrecht ◽  
Nicole S. Glaser ◽  
Dennis M. Styne ◽  
Andrew A. Bremer

2021 ◽  
Author(s):  
Riccardo Bonfanti ◽  
Dario Iafusco ◽  
Ivana Rabbone ◽  
Giacomo Diedenhofen ◽  
Carla Bizzarri ◽  
...  

Objective: Transient neonatal diabetes mellitus (TNDM) is caused by activating mutations in ABCC8 and KCNJ11 genes (KATP/TNDM) or by chromosome 6q24 abnormalities (6q24/TNDM). We wanted to assess whether these different genetic aetiologies result in distinct clinical features. Design: Retrospective analysis of the Italian data set of patients with TNDM. Methods: Clinical features and treatment of 22 KATP/ TNDM patients and 12 6q24/TNDM patients were compared. Results: Fourteen KATP/TNDM probands had a carrier parent with abnormal glucose values, four patients with 6q24 showed macroglossia and/or umbilical hernia. Median age at diabetes onset and birth weight were lower in patients with 6q24 (1 week; -2.27 SD) than those with KATP mutations (4.0 weeks; -1.04 SD) (p=0.009 and p=0.007, respectively). Median time to remission was longer in KATP/TNDM than 6q24/TNDM (21.5 vs 12 weeks) (p=0.002). Two KATP/TNDM patients entered diabetes remission without pharmacological therapy. A proband with the ABCC8/L225P variant previously associated with permanent neonatal diabetes entered 7-year long remission after 1 year of sulfonylurea therapy. Seven diabetic individuals with KATP mutations were successfully treated with sulfonylurea monotherapy; four cases with relapsing 6q24/TNDM were treated with insulin, metformin or combination therapy. Conclusions: If TNDM is suspected, KATP genes should be analyzed first with the exception of patients with macroglossia and/or umbilical hernia. Remission of diabetes without pharmacological therapy should not preclude genetic analysis. Early treatment with sulfonylurea may induce long-lasting remission of diabetes in patients with KATP mutations associated with PNDM. Adult patients carrying KATP/TNDM mutations respond favourably to sulfonylurea monotherapy.


2003 ◽  
Vol 17 (2) ◽  
pp. 73-74
Author(s):  
MJ Reddy ◽  
RH Udani ◽  
SM Aber ◽  
V Shingde

2015 ◽  
Vol 84 (4) ◽  
pp. 283-288 ◽  
Author(s):  
Sabrina Anderson de la Llana ◽  
Philippe Klee ◽  
Federico Santoni ◽  
Caroline Stekelenburg ◽  
Jean-Louis Blouin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document