scholarly journals In Vivo Positron Emission Tomography Imaging of Adenosine A2A Receptors

2020 ◽  
Vol 11 ◽  
Author(s):  
Meng-Juan Sun ◽  
Fang Liu ◽  
Ya-Fei Zhao ◽  
Xiao-Ai Wu

As an invasive nuclear medical imaging technology, positron emission tomography (PET) possess the possibility to imaging the distribution as well as the density of selective receptors via specific PET tracers. Inspired by PET, the development of radio-chemistry has greatly promoted the progress of innovative imaging PET tracers for adenosine receptors, in particular adenosine A2A receptors (A2ARs). PET imaging of A2A receptors play import roles in the research of adenosine related disorders. Several radio-tracers for A2A receptors imaging have been evaluated in human studies. This paper reviews the recent research progress of PET tracers for A2A receptors imaging, and their applications in the diagnosis and treatment of related disease, such as cardiovascular diseases, autoimmune diseases, neurodegenerative and psychiatric disease. The future development of A2A PET tracers were also discussed.

2004 ◽  
Vol 31 (7) ◽  
pp. 949-956 ◽  
Author(s):  
Kiichi Ishiwata ◽  
Masaki Mizuno ◽  
Yuichi Kimura ◽  
Kazunori Kawamura ◽  
Keiichi Oda ◽  
...  

2003 ◽  
Vol 17 (3) ◽  
pp. 205-211 ◽  
Author(s):  
Kiichi Ishiwata ◽  
Wei-Fang Wang ◽  
Yuichi Kimura ◽  
Kazunori Kawamura ◽  
Kenji Ishii

Synapse ◽  
2004 ◽  
Vol 55 (2) ◽  
pp. 133-136 ◽  
Author(s):  
Kiichi Ishiwata ◽  
Masahiro Mishina ◽  
Yuichi Kimura ◽  
Keiichi Oda ◽  
Toru Sasaki ◽  
...  

2000 ◽  
Vol 27 (6) ◽  
pp. 541-546 ◽  
Author(s):  
Wei-Fang Wang ◽  
Kiichi Ishiwata ◽  
Hiromi Nonaka ◽  
Shin-ichi Ishii ◽  
Motohiro Kiyosawa ◽  
...  

2006 ◽  
Vol 34 (5) ◽  
pp. 679-687 ◽  
Author(s):  
Mika Naganawa ◽  
Yuichi Kimura ◽  
Masahiro Mishina ◽  
Yoshitsugu Manabe ◽  
Kunihiro Chihara ◽  
...  

1991 ◽  
Vol 11 (6) ◽  
pp. 926-931 ◽  
Author(s):  
M. Ingvar ◽  
L. Eriksson ◽  
G. A. Rogers ◽  
S. Stone-Elander ◽  
L. Widén

The development of methods for production of a radiotracer for use in human studies with positron emission tomography (PET) is often a time-consuming process of optimizing radiolabelling yields and handling procedures. Sometimes the radiotracer is not the original drug, but rather a derivative with unknown in vivo pharmacological properties. We have developed a fast and simple method of testing putative new PET tracers in vivo in small animals. The procedure has been validated in rats with different PET tracers with known kinetic and pharmacological properties ([2-18F]2-fluoro-2-deoxy-d-glucose, [ N-methyl-11C]Ro 15-1788, and [15O]butanol). The tracer concentration in arterial blood was continuously measured to obtain the brain input function. Following image reconstruction of the scans, time–activity curves of selected regions of interest were generated. Estimations of CMRglc (1.0 ± 0.2 μmol g−1 min−1), CBF (1.4 ± 0.4 ml g−1 min−1) and transport rate constants for [ N-methyl-11C]Ro 15-1788 (K1 = 0.44 ± 0.01 ml g−1 min−1 and k2 = 0.099 ± 0.005 min−1) as well as calculated first pass extraction (0.32 ±0.1) are in reasonable agreement with literature values. Small animal studies require minimal amounts of radioactivity and can be performed without sterility and toxicology tests. They may serve as a preliminary basis for radiation safety calculations because whole body scans can be performed even with a head scanner. The major advantage of this procedure in comparison to ex vivo autoradiography is that very few experiments are necessary to reliably determine the properties of the blood–brain barrier transport of the radiotracer and the possible whole brain receptor binding characteristics.


2020 ◽  
Vol 133 (4) ◽  
pp. 1010-1019 ◽  
Author(s):  
Hiroaki Takei ◽  
Jun Shinoda ◽  
Soko Ikuta ◽  
Takashi Maruyama ◽  
Yoshihiro Muragaki ◽  
...  

OBJECTIVEPositron emission tomography (PET) is important in the noninvasive diagnostic imaging of gliomas. There are many PET studies on glioma diagnosis based on the 2007 WHO classification; however, there are no studies on glioma diagnosis using the new classification (the 2016 WHO classification). Here, the authors investigated the relationship between uptake of 11C-methionine (MET), 11C-choline (CHO), and 18F-fluorodeoxyglucose (FDG) on PET imaging and isocitrate dehydrogenase (IDH) status (wild-type [IDH-wt] or mutant [IDH-mut]) in astrocytic and oligodendroglial tumors according to the 2016 WHO classification.METHODSIn total, 105 patients with newly diagnosed cerebral gliomas (6 diffuse astrocytomas [DAs] with IDH-wt, 6 DAs with IDH-mut, 7 anaplastic astrocytomas [AAs] with IDH-wt, 24 AAs with IDH-mut, 26 glioblastomas [GBMs] with IDH-wt, 5 GBMs with IDH-mut, 19 oligodendrogliomas [ODs], and 12 anaplastic oligodendrogliomas [AOs]) were included. All OD and AO patients had both IDH-mut and 1p/19q codeletion. The maximum standardized uptake value (SUV) of the tumor/mean SUV of normal cortex (T/N) ratios for MET, CHO, and FDG were calculated, and the mean T/N ratios of DA, AA, and GBM with IDH-wt and IDH-mut were compared. The diagnostic accuracy for distinguishing gliomas with IDH-wt from those with IDH-mut was assessed using receiver operating characteristic (ROC) curve analysis of the mean T/N ratios for the 3 PET tracers.RESULTSThere were significant differences in the mean T/N ratios for all 3 PET tracers between the IDH-wt and IDH-mut groups of all histological classifications (p < 0.001). Among the 27 gliomas with mean T/N ratios higher than the cutoff values for all 3 PET tracers, 23 (85.2%) were classified into the IDH-wt group using ROC analysis. In DA, there were no significant differences in the T/N ratios for MET, CHO, and FDG between the IDH-wt and IDH-mut groups. In AA, the mean T/N ratios of all 3 PET tracers in the IDH-wt group were significantly higher than those in the IDH-mut group (p < 0.01). In GBM, the mean T/N ratio in the IDH-wt group was significantly higher than that in the IDH-mut group for both MET (p = 0.034) and CHO (p = 0.01). However, there was no significant difference in the ratio for FDG.CONCLUSIONSPET imaging using MET, CHO, and FDG was suggested to be informative for preoperatively differentiating gliomas according to the 2016 WHO classification, particularly for differentiating IDH-wt and IDH-mut tumors.


Sign in / Sign up

Export Citation Format

Share Document