scholarly journals Optimal Design of Electrically Fed Hybrid Mars Ascent Vehicle

Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 181
Author(s):  
Lorenzo Casalino ◽  
Filippo Masseni ◽  
Dario Pastrone

The optimal design of the propulsion system for a potential Mars Ascent Vehicle is analyzed, in the context of the Mars Sample Return Mission. The Mars Ascent Vehicle has to perform an initial ascent phase from the surface and then circularize into a 170 km orbit. A two-stage launcher is taken into account: the same hybrid rocket engine is considered for both stages in order to limit the development costs. A cluster of two, three or four engines is employed in the first stage, whereas a single engine is always used in the second stage. Concerning the feeding system, three alternatives are taken into consideration, namely a blow down, a regulated and an electric turbo-pump feed system. The latter employs an electric motor to drive the oxidizer turbopump, whereas the power is supplied to the motor by lithium batteries. All the design options resulted in viable Mars Ascent Vehicle configurations (payloads are in the range of 70–100 kg), making the hybrid alternative worth considering for the sample return mission. The use of an electric turbo-pump feed system determines the highest vehicle performance with an estimated 10–25% payload gain with respect to gas-pressure feed systems.

Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 226
Author(s):  
Lorenzo Casalino ◽  
Filippo Masseni ◽  
Dario Pastrone

Optimization of Hybrid Rocket Engines at Politecnico di Torino began in the 1990s. A comprehensive review of the related research activities carried out in the last three decades is here presented. After a brief introduction that retraces driving motivations and the most significant steps of the research path, the more relevant aspects of analysis, modeling and achieved results are illustrated. First, criteria for the propulsion system preliminary design choices (namely the propellant combination, the feed system and the grain design) are summarized and the engine modeling is presented. Then, the authors describe the in-house tools that have been developed and used for coupled trajectory and propulsion system design optimization. Both deterministic and robust-based approaches are presented. The applications that the authors analyzed over the years, starting from simpler hybrid powered sounding rocket to more complex multi-stage launchers, are then presented. Finally, authors’ conclusive remarks on the work done and their future perspective in the context of the optimization of hybrid rocket propulsion systems are reported.


2008 ◽  
Vol 22 (8) ◽  
pp. 1576-1585 ◽  
Author(s):  
Ihnseok Rhee ◽  
Changjin Lee ◽  
Jae-Woo Lee

Aerospace ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 36 ◽  
Author(s):  
Lorenzo Casalino ◽  
Filippo Masseni ◽  
Dario Pastrone

An electrically driven pump-fed cycle for a hybrid rocket engine is proposed and compared to a simpler gas-pressurized feed system. A liquid-oxygen/paraffin-based fuel hybrid rocket engine which powers the third stage of a Vega-like launcher is considered. Third-stage ignition conditions are assigned, and engine design and payload mass are defined by a proper set of parameters. Uncertainties in the classical regression rate correlation coefficients are taken into account and robust design optimization is carried out with an approach based on an epsilon-constrained evolutionary algorithm. A mission-specific objective function, which takes into account both the payload mass and the ability of the rocket to reach the required final orbit despite uncertainties, is determined by an indirect trajectory optimization approach. The target orbit is a 700 km altitude polar orbit. Results show that electrically driven pump-fed cycle is a viable option for the replacement of the conventional gas-pressurized feed system. Robustness in the design is granted and a remarkable payload gain is achieved, using both present and advanced technologies for electrical systems.


Author(s):  
Boris A. Sokolov ◽  
Nikolay N. Tupitsyn

The paper presents results of engineering studies and research and development efforts at RSC Energia to analyze and prove the feasibility of using the mass-produced oxygen-hydrocarbon engine 11D58M with 8.5 ton-force thrust as a basis for development of a high-performance multifunctional rocket engine with oxygen cooling and 5 ton-force thrust, which is optimal for upper stages (US), embodying a system that does not include a gas generator. The multi-functionality of the engine implies including in it additional units supporting some functions that are important for US, such as feeding propellant from US tanks to the engine after flying in zero gravity, autonomous control of the engine automatic equipment to support its firing, shutdown, adjustments during burn and emergency protection in case of off-nominal operation, as well as generating torques for controlling the US attitude and stabilizing it during coasting, etc. Replacing conventional engine chamber cooling that uses high-boiling hydrocarbon fuel with the innovative oxygen cooling makes it possible to get rid of the internal film cooling circuits and eliminate their attendant losses of fuel, while the use of the oxygen gasified in the cooling circuit of the chamber to drive the turbo pump assembly permits to design an engine that does not have a gas generator. Key words: Multifunctional rocket engine, oxygen cooling, gas-generatorless design, upper stage.


Sign in / Sign up

Export Citation Format

Share Document