rocket engines
Recently Published Documents


TOTAL DOCUMENTS

1152
(FIVE YEARS 265)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Robert F. Burke ◽  
Taha Rezzag ◽  
Alexander Rodriguez ◽  
Kian Garcia ◽  
Kareem A. Ahmed ◽  
...  

2022 ◽  
Author(s):  
Michał Kawalec ◽  
Witold Perkowski ◽  
Borys Łukasik ◽  
Adam Bilar ◽  
Piotr Wolański

In the paper short information about advantages of introduction of detonation combustion to propulsion systems is briefly discussed and then research conducted at the Łukasiewicz-Institute of Aviation on development of the rotating detonation engines (RDE) is presented. Special attention is focused on continuously rotating detonation (CRD), since it offers significant advantages over pulsed detonation (PD). Basic aspects of initiation and stability of the CRD are discussed. Examples of applications of the CRD to gas turbine and rocket engines are presented and a combine cycle engine utilizing CRD are also evaluated. The world's first rocket flight powered by liquid propellant detonation engine is also described.


2022 ◽  
Vol 190 ◽  
pp. 98-111
Author(s):  
Simon Blanchard ◽  
Quentin Cazères ◽  
Bénédicte Cuenot

Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 385
Author(s):  
Tor Viscor ◽  
Hikaru Isochi ◽  
Naoto Adachi ◽  
Harunori Nagata

Burn time errors caused by various start-up transient effects have a significant influence on the regression modelling of hybrid rockets. Their influence is especially pronounced in the simulation model of the Cascaded Multi Impinging Jet (CAMUI) hybrid rocket engine. This paper analyses these transient burn time errors and their effect on the regression simulations for short burn time engines. To address these errors, the equivalent burn time is introduced and is defined as the time the engine would burn if it were burning at its steady-state level throughout the burn time to achieve the measured total impulse. The accuracy of the regression simulation with and without the use of equivalent burn time is then finally compared. Equivalent burn time is shown to address the burn time issue successfully for port regression and, therefore, also for other types of cylindrical port hybrid rocket engines. For the CAMUI-specific impinging jet fore-end and back-end surfaces, though, the results are inconclusive.


Sign in / Sign up

Export Citation Format

Share Document