scholarly journals A Fast, Hybrid, Time-Domain Discontinuous Galerkin-Physical Optics Method for Composite Electromagnetic Scattering Analysis

2021 ◽  
Vol 11 (6) ◽  
pp. 2694
Author(s):  
Ceyi Ma ◽  
Yinghong Wen ◽  
Jinbao Zhang

To accelerate the solution of transient electromagnetic scattering from composite scatters, a novel hybrid discontinuous Galerkin time domain (DGTD) and time-domain physical optics (TDPO) method is proposed. The DGTD method is used to solve the accurate scattering field of the multi-scale objects region, and a hybrid explicit-implicit time integration method is also used to improve the efficiency of multi-scale problems in the time domain. Meanwhile, the TDPO method is used to accelerate the speed of surface current integration in an electrically large region. In addition, the DGTDPO method considers the mutual coupling between two regions, and effectively reduces the number of numerical calculations for the other space of the composite target, thereby significantly reducing the computer memory consumption. Numerical results certified the high efficiency and accuracy of the hybrid DGTDPO. According to the results, in comparison with the DGTD algorithm in the entire computational domain, the DGTDPO method can reduce computing time and memory by 90% and 70% respectively. Meanwhile, the normalized root mean square deviation (NRMSD) of the time-domain, high-frequency approximation method is over 0.2, and that of the DGTDPO method is only 0.0971. That is, compared with the approximation methods, the hybrid method improves the accuracy by more than 64%.

Author(s):  
Changkun Wei ◽  
Jiaqing Yang ◽  
Bo Zhang

In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over the spherical one in dealing with problems involving anisotropic scatterers. The truncated uniaxial PML problem is proved to be well-posed and stable, based on the Laplace transform technique and the energy method. Moreover, the $L^2$-norm and $L^{\infty}$-norm error estimates in time are given between the solutions of the original scattering problem and the truncated PML problem, leading to the exponential convergence of the time-domain uniaxial PML method in terms of the thickness and absorbing parameters of the PML layer. The proof depends on the error analysis between the EtM operators for the original scattering problem and the truncated PML problem, which is different from our previous work (SIAM J. Numer. Anal. 58(3) (2020), 1918-1940).


2021 ◽  
Vol 36 (3) ◽  
pp. 245-251
Author(s):  
Jun Li ◽  
Huaguang Bao ◽  
Dazhi Ding

In order to evaluate scattering from hypersonic vehicles covered with the plasma efficiently, time domain volume shooting and bouncing rays (TDVSBR) is first introduced in this paper. The new method is applied to solve the transient electromagnetic scattering from complex targets, which combines with non-homogeneous dielectric and perfect electric conducting (PEC) bodies. To simplify the problem, objects are discretized into tetrahedrons with different electromagnetic parameters. Then the reflection and transmission coefficients can be obtained by using theory of electromagnetic waves propagation in lossy medium. After that, we simulate the reflection and transmission of rays in different media. At last, the scattered fields or radiation are solved by the last exiting ray from the target. Compared with frequency-domain methods, time-domain methods can obtain the wideband RCS efficiently. Several numerical results are given to demonstrate the high efficiency and accuracy of this proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document