scholarly journals A Form Stable Composite Phase Change Material for Thermal Energy Storage Applications over 700 °C

2019 ◽  
Vol 9 (5) ◽  
pp. 814 ◽  
Author(s):  
Zhu Jiang ◽  
Feng Jiang ◽  
Chuan Li ◽  
Guanghui Leng ◽  
Xuemin Zhao ◽  
...  

Thermal energy storage (TES) is a highly effective approach for mitigating the intermittency and fluctuation of renewable energy sources and reducing industrial waste heat. We report here recent research on the use of composite phase change materials (PCM) for applications over 700 °C. For such a category of material, chemical incompatibility and low thermal conductivity are often among the main challenges. Our aims are to address these challenges through the formulation of form-stable composite PCMs and to understand their thermophysical properties. The eutectic K2CO3-Na2CO3 salt was used as a PCM with MgO as a form stabilizer. We found that such a formulation could maintain shape stability with up to 60 wt.% PCM. With a melting point of ~710.1 °C and an energy density as high as 431.2 J/g over a temperature range between 550 °C and 750 °C, the composite PCM was shown to be thermally stable up to 885 °C. An addition of 10 wt.% SiC enhanced the overall thermal conductivity from 1.94 W·m−1 K−1 to 2.28 W·m−1 K−1, giving an enhancement of 17.53%. Analyses of thermal cycling data also showed a high extent of chemical compatibility among the ingredients of the composite PCM.

2014 ◽  
Vol 7 (3) ◽  
pp. 1185-1192 ◽  
Author(s):  
Hengxing Ji ◽  
Daniel P. Sellan ◽  
Michael T. Pettes ◽  
Xianghua Kong ◽  
Junyi Ji ◽  
...  

Embedding continuous ultrathin-graphite foams (UGFs) with volume fractions as low as 0.8–1.2 vol% in a phase change material (PCM) can increase the effective thermal conductivity by up to 18 times, with negligible change in the melting temperature or mass specific heat of fusion.


2012 ◽  
Vol 602-604 ◽  
pp. 1086-1089
Author(s):  
Qi Song Shi ◽  
Kui Long Liu

The myristic acid/silicon dioxide composite materials were prepared by sol-gel methods. The myristic acid was used as the phase change material for thermal energy storage, with the SiO2 acting as the supporting material. The structural analysis of these form-stable myristic acid /SiO2 composite phase change materials was carried out using Fourier transformation infrared spectroscope (FT-IR).The microstructure of the form-stable composite phase change materials was observed by a scanning electronic microscope (SEM). The thermal properties was investigated by a differential scanning calorimeter (DSC).The SEM results showed that the myristic acid was well dispersed in the porous network of SiO2. And the new nanocomposite material has favorable thermal storage capacity and can be applied to solar energy storage, industrial waste heat, recovery of waste heat and as civilian structural materials.


Sign in / Sign up

Export Citation Format

Share Document