scholarly journals Direct Sampling for Recovering Sound Soft Scatterers from Point Source Measurements

Computation ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 120
Author(s):  
Isaac Harris

In this paper, we consider the inverse problem of recovering a sound soft scatterer from the measured scattered field. The scattered field is assumed to be induced by a point source on a curve/surface that is known. Here, we propose and analyze new direct sampling methods for this problem. The first method we consider uses a far-field transformation of the near-field data, which allows us to derive explicit bounds in the resolution analysis for the direct sampling method’s imaging functional. Two direct sampling methods are studied, using the far-field transformation. For these imaging functionals, we use the Funk–Hecke identities to study the resolution analysis. We also study a direct sampling method for the case of the given Cauchy data. Numerical examples are given to show the applicability of the new imaging functionals for recovering a sound soft scatterer with full and partial aperture data.

2017 ◽  
Vol 65 (10) ◽  
pp. 5492-5502 ◽  
Author(s):  
Alexander Paulus ◽  
Josef Knapp ◽  
Thomas F. Eibert

1990 ◽  
Vol 26 (22) ◽  
pp. 1886 ◽  
Author(s):  
E. van Lil ◽  
C. Cao ◽  
A. van de Capelle ◽  
K. Van't Klooster

1997 ◽  
Vol 16 ◽  
pp. 269-284 ◽  
Author(s):  
T. K. Sarkar ◽  
P. Petre ◽  
A. Taaghol ◽  
R. F. Harrington

2012 ◽  
Vol 10 ◽  
pp. 69-73 ◽  
Author(s):  
K. A. Yinusa ◽  
C. H. Schmidt ◽  
T. F. Eibert

Abstract. Near-field measurements are established techniques to obtain the far-field radiation pattern of an Antenna Under Test via near-field measurements and subsequent near-field far-field transformation. For measurements acquired in echoic environments, additional post-processing is required to eliminate the effects of multipath signals in the resulting far-field pattern. One of such methods models the measurement environment as a multiple source scenario whereby the collected near-field data is attributed to the AUT and some scattering centers in the vicinity of the AUT. In this way, the contributions of the AUT at the probe can be separated from those of the disturbers during the near-field far-field transformation if the disturber locations are known. In this paper, we present ways of modeling the scattering centers on equivalent surfaces such that echo suppression is possible with only partial or no information about the geometry of the scatterers.


Sign in / Sign up

Export Citation Format

Share Document