Experimental tests on a spherical near-field to far-field transformation using a reduced number of offset NF data

Author(s):  
F. D'Agostino ◽  
F. Ferrara ◽  
C. Gennarelli ◽  
R. Guerriero ◽  
M. Migliozzi
2019 ◽  
Vol 13 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Francesco D’Agostino ◽  
Flaminio Ferrara ◽  
Claudio Gennarelli ◽  
Rocco Guerriero ◽  
Massimo Migliozzi

Background: The development of fast Near-Field (NF) measurement techniques allowing the precise determination of the Far-Field (FF) radiation features of an antenna is becoming more and more challenging nowadays. Objective: The goal of the article is the development of an NF To FF Transformation (NFTFFT) with spherical scan for offset mounted volumetric Antennas Under Tests (AUTs) requiring, unlike the classical technique, a reduced set of NF data, that is of the same amount as for the onset mounting case, thus making data gathering faster. In fact, the number of NF data needed by the standard approach may considerably increase in this case, since the size of the smallest sphere surrounding the AUT and centered at the center of the measurement sphere rises. Methods: This goal has been achieved by profitably exploiting the non-redundant sampling representation of electromagnetic field and assuming a volumetric AUT as contained in a sphere. An optimal sampling interpolation algorithm is then employed to precisely reconstruct the input NF data for the traditional spherical NFTFFT from the reduced set of the collected ones. Conclusion: The numerical simulations and experimental tests demonstrate the effectiveness of the developed approach accounting for an offset mounting of the AUT.


2017 ◽  
Vol 65 (10) ◽  
pp. 5492-5502 ◽  
Author(s):  
Alexander Paulus ◽  
Josef Knapp ◽  
Thomas F. Eibert

1990 ◽  
Vol 26 (22) ◽  
pp. 1886 ◽  
Author(s):  
E. van Lil ◽  
C. Cao ◽  
A. van de Capelle ◽  
K. Van't Klooster

1997 ◽  
Vol 16 ◽  
pp. 269-284 ◽  
Author(s):  
T. K. Sarkar ◽  
P. Petre ◽  
A. Taaghol ◽  
R. F. Harrington

2012 ◽  
Vol 10 ◽  
pp. 69-73 ◽  
Author(s):  
K. A. Yinusa ◽  
C. H. Schmidt ◽  
T. F. Eibert

Abstract. Near-field measurements are established techniques to obtain the far-field radiation pattern of an Antenna Under Test via near-field measurements and subsequent near-field far-field transformation. For measurements acquired in echoic environments, additional post-processing is required to eliminate the effects of multipath signals in the resulting far-field pattern. One of such methods models the measurement environment as a multiple source scenario whereby the collected near-field data is attributed to the AUT and some scattering centers in the vicinity of the AUT. In this way, the contributions of the AUT at the probe can be separated from those of the disturbers during the near-field far-field transformation if the disturber locations are known. In this paper, we present ways of modeling the scattering centers on equivalent surfaces such that echo suppression is possible with only partial or no information about the geometry of the scatterers.


2009 ◽  
Vol 7 ◽  
pp. 17-22 ◽  
Author(s):  
C. H. Schmidt ◽  
T. F. Eibert

Abstract. The radiation of large antennas and those operating at low frequencies can be determined efficiently by near-field measurement techniques and a subsequent near-field far-field transformation. Various approaches and algorithms have been researched but for electrically large antennas and irregular measurement contours advanced algorithms with low computation complexity are required. In this paper an algorithm employing plane waves as equivalent sources and utilising efficient diagonal translation operators is presented. The efficiency is further enhanced using simple far-field translations in combination with the expensive near-field translations. In this way a low complexity near-field transformation is achieved, which works for arbitrary sample point distributions and incorporates a full probe correction without increasing the complexity.


Sign in / Sign up

Export Citation Format

Share Document