scholarly journals Using IVIM Parameters to Differentiate Prostate Cancer and Contralateral Normal Tissue through Fusion of MRI Images with Whole-Mount Pathology Specimen Images by Control Point Registration Method

Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2340
Author(s):  
Cheng-Chun Lee ◽  
Kuang-Hsi Chang ◽  
Feng-Mao Chiu ◽  
Yen-Chuan Ou ◽  
Jen-I. Hwang ◽  
...  

The intravoxel incoherent motion (IVIM) model may enhance the clinical value of multiparametric magnetic resonance imaging (mpMRI) in the detection of prostate cancer (PCa). However, while past IVIM modeling studies have shown promise, they have also reported inconsistent results and limitations, underscoring the need to further enhance the accuracy of IVIM modeling for PCa detection. Therefore, this study utilized the control point registration toolbox function in MATLAB to fuse T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) MRI images with whole-mount pathology specimen images in order to eliminate potential bias in IVIM calculations. Sixteen PCa patients underwent prostate MRI scans before undergoing radical prostatectomies. The image fusion method was then applied in calculating the patients’ IVIM parameters. Furthermore, MRI scans were also performed on 22 healthy young volunteers in order to evaluate the changes in IVIM parameters with aging. Among the full study cohort, the f parameter was significantly increased with age, while the D* parameter was significantly decreased. Among the PCa patients, the D and ADC parameters could differentiate PCa tissue from contralateral normal tissue, while the f and D* parameters could not. The presented image fusion method also provided improved precision when comparing regions of interest side by side. However, further studies with more standardized methods are needed to further clarify the benefits of the presented approach and the different IVIM parameters in PCa characterization.

Author(s):  
Liu Xian-Hong ◽  
Chen Zhi-Bin

Background: A multi-scale multidirectional image fusion method is proposed, which introduces the Nonsubsampled Directional Filter Bank (NSDFB) into the multi-scale edge-preserving decomposition based on the fast guided filter. Methods: The proposed method has the advantages of preserving edges and extracting directional information simultaneously. In order to get better-fused sub-bands coefficients, a Convolutional Sparse Representation (CSR) based approximation sub-bands fusion rule is introduced and a Pulse Coupled Neural Network (PCNN) based detail sub-bands fusion strategy with New Sum of Modified Laplacian (NSML) to be the external input is also presented simultaneously. Results: Experimental results have demonstrated the superiority of the proposed method over conventional methods in terms of visual effects and objective evaluations. Conclusion: In this paper, combining fast guided filter and nonsubsampled directional filter bank, a multi-scale directional edge-preserving filter image fusion method is proposed. The proposed method has the features of edge-preserving and extracting directional information.


2021 ◽  
Vol 92 ◽  
pp. 107174
Author(s):  
Yang Zhou ◽  
Xiaomin Yang ◽  
Rongzhu Zhang ◽  
Kai Liu ◽  
Marco Anisetti ◽  
...  

2005 ◽  
Vol 16 (3) ◽  
pp. 189-196 ◽  
Author(s):  
Liu Bin ◽  
Peng Jiaxiong

Sign in / Sign up

Export Citation Format

Share Document