scholarly journals Scale-Invariant Rotating Black Holes in Quadratic Gravity

Entropy ◽  
2015 ◽  
Vol 17 (12) ◽  
pp. 5145-5156 ◽  
Author(s):  
Guido Cognola ◽  
Massimiliano Rinaldi ◽  
Luciano Vanzo
2020 ◽  
Vol 135 (11) ◽  
Author(s):  
Christian Dioguardi ◽  
Massimiliano Rinaldi

AbstractBlack holes in f(R)-gravity are known to be unstable, especially the rotating ones. In particular, an instability develops that looks like the classical black hole bomb mechanism: the linearized modified Einstein equations are characterized by an effective mass that acts like a massive scalar perturbation on the Kerr solution in general relativity, which is known to yield instabilities. In this note, we consider a special class of f(R) gravity that has the property of being scale-invariant. As a prototype, we consider the simplest case $$f(R)=R^2$$ f ( R ) = R 2 and show that, in opposition to the general case, static and stationary black holes are stable, at least at the linear level. Finally, the result is generalized to a wider class of f(R) theories.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
V. Pravda ◽  
A. Pravdová ◽  
J. Podolský ◽  
R. Švarc

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Subhroneel Chakrabarti ◽  
Suresh Govindarajan ◽  
P. Shanmugapriya ◽  
Yogesh K. Srivastava ◽  
Amitabh Virmani

Abstract Although BMPV black holes in flat space and in Taub-NUT space have identical near-horizon geometries, they have different indices from the microscopic analysis. For K3 compactification of type IIB theory, Sen et al. in a series of papers identified that the key to resolving this puzzle is the black hole hair modes: smooth, normalisable, bosonic and fermionic degrees of freedom living outside the horizon. In this paper, we extend their study to N = 4 CHL orbifold models. For these models, the puzzle is more challenging due to the presence of the twisted sectors. We identify hair modes in the untwisted as well as twisted sectors. We show that after removing the contributions of the hair modes from the microscopic partition functions, the 4d and 5d horizon partition functions agree. Special care is taken to present details on the smoothness analysis of hair modes for rotating black holes, thereby filling an essential gap in the literature.


2014 ◽  
Vol 90 (8) ◽  
Author(s):  
Eugeny Babichev ◽  
Alessandro Fabbri

2000 ◽  
Vol 84 (20) ◽  
pp. 4537-4540 ◽  
Author(s):  
Nils Andersson ◽  
Kostas Glampedakis

2018 ◽  
Vol 779 ◽  
pp. 151-159 ◽  
Author(s):  
Carlos Herdeiro ◽  
Jutta Kunz ◽  
Eugen Radu ◽  
Bintoro Subagyo

Sign in / Sign up

Export Citation Format

Share Document