scholarly journals Channel Coding and Source Coding With Increased Partial Side Information

Entropy ◽  
2017 ◽  
Vol 19 (9) ◽  
pp. 467
Author(s):  
Avihay Sadeh-Shirazi ◽  
Uria Basher ◽  
Haim Permuter
2005 ◽  
Vol 05 (01) ◽  
pp. 5-35 ◽  
Author(s):  
SVIATOSLAV VOLOSHYNOVSKIY ◽  
FREDERIC DEGUILLAUME ◽  
OLEKSIY KOVAL ◽  
THIERRY PUN

In this paper we introduce and develop a framework for visual data-hiding technologies that aim at resolving emerging problems of modern multimedia networking. First, we introduce the main open issues of public network security, quality of services control and secure communications. Secondly, we formulate digital data-hiding into visual content as communications with side information and advocate an appropriate information-theoretic framework for the analysis of different data-hiding methods in various applications. In particular, Gel'fand-Pinsker channel coding with side information at the encoder and Wyner-Ziv source coding with side information at the decoder are used for this purpose. Finally, we demonstrate the possible extensions of this theory for watermark-assisted multimedia processing and indicate its perspectives for distributed communications.


2008 ◽  
Author(s):  
Guy Keshet ◽  
Yossef Steinberg ◽  
Neri Merhav

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 953 ◽  
Author(s):  
Yuanchu Yin ◽  
Jiefan Qiu ◽  
Zhiqiang Li ◽  
Mingsheng Cao

When a wireless sensor node’s wireless communication fails after being deployed in an inaccessible area, the lost node cannot be repaired through a debugging interaction that relies on that communication. Visible light communication (VLC) as a supplement of radio wave communication can improve the transmission security at the physical layer due to its unidirectional propagation characteristic. Therefore, we implemented a VLC-based hybrid communication debugging system (HCDS) based on VLC using smartphone and sensor node. For the system’s downlink, the smartphone is taken as the VLC gateway and sends the debugging codes to the sensor node by the flashlight. To improve the transmission efficiency of the downlink, we also propose a new coding method for source coding and channel coding, respectively. For the source coding, we analyze the binary instructions and compress the operands using bitmask techniques. The average compression rate of the binary structure reaches 84.11%. For the channel coding, we optimize dual-header pulse interval (DH-PIM) and propose overlapped DH-PIM (ODH-PIM) by introducing a flashlight half-on state. The flashlight half-on state can improve the representation capability of individual symbols. For the uplink of HCDS, we use the onboard LED of the sensor node to transmit feedback debugging information to the smartphone. At the same time, we design a novel encoding format of DH-PIM to optimize uplink transmission. Experimental results show that the optimized uplink transmission time and BER are reduced by 10.71% and 22%, compared with the original DH-PIM.


Sign in / Sign up

Export Citation Format

Share Document