sensor nodes
Recently Published Documents


TOTAL DOCUMENTS

4530
(FIVE YEARS 1736)

H-INDEX

49
(FIVE YEARS 13)

2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

A novel secure energy aware game theory (SEGaT) method has proposed to have better coordination in wireless sensor actor networks. An actor has a cluster of sensor nodes which is required to perform different action based on the need that emerge in the network individually or sometime with coordination from other actors. The method has different stages for the fulfilment of these actions. Based on energy aware actor selection (EAAS), selection of number of actors and their approach is the initial step followed by the selection of best team of sensors with each actor to carry out the action and lastly the selection of reliable node within that team to finally nail the action into place in the network for its smooth working and minimum compromise in the energy The simulations are done in MATLAB and result of the energy and the packet delivery ratio are compared with game theory (GaT) and real time energy constraint (RTEC) method. The proposed protocol performs better in terms of energy consumption, packet delivery ratio as compared to its competitive protocols.


Author(s):  
Mohammed Réda El Ouadi ◽  
Abderrahim Hasbi

The rapid development of connected devices and wireless communication has enabled several researchers to study wireless sensor networks and propose methods and algorithms to improve their performance. Wireless sensor networks (WSN) are composed of several sensor nodes deployed to collect and transfer data to base station (BS). Sensor node is considered as the main element in this field, characterized by minimal capacities of storage, energy, and computing. In consequence of the important impact of the energy on network lifetime, several researches are interested to propose different mechanisms to minimize energy consumption. In this work, we propose a new enhancement of low-energy adaptive clustering hierarchy (LEACH) protocol, named clustering location-based LEACH (CLOC-LEACH), which represents a continuity of our previous published work location-based LEACH (LOC-LEACH). The proposed protocol organizes sensor nodes into four regions, using clustering mechanism. In addition, an efficient concept is adopted to choose cluster head. CLOC-LEACH considers the energy as the principal metric to choose cluster heads and uses a gateway node to ensure the inter-cluster communication. The simulation with MATLAB shows that our contribution offers better performance than LEACH and LOC-LEACH, in terms of stability, energy consumption and network lifetime.


Author(s):  
Chavala Lakshmi Narayana ◽  
Rajesh Singh ◽  
Anita Gehlot

These days, the oil industrial industry is leaning toward employing smart field improvements to streamline various activities in the midstream area. Oil transportation over large distances via pipelines has a cheap cost and high efficiency in this sector. If pipelines are not properly maintained, they may fail, potentially causing catastrophic, long-term, and irreversible consequences on both natural and human conditions. Low power wide area networks (LPWANs) are without a doubt one of the domains that cause the most from industrial fields when it comes to realizing the vision of the internet of things (IoT). Long-range (LoRa) is an emerging LPWAN technology that is particularly useful for transmitting data over long distances. The goal of this work is to offer a methodology for managing oil pipelines over long distances utilizing the LoRa communication protocol and the installation of sensor nodes and LoRa gateways along the pipeline. We also used the optimized network engineering tools (OPNET) simulator to examine various simulation findings of LoRa performance.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-23
Author(s):  
Mahabub Hasan Mahalat ◽  
Dipankar Karmakar ◽  
Anindan Mondal ◽  
Bibhash Sen

The deployment of wireless sensor networks (WSN) in an untended environment and the openness of the wireless channel bring various security threats to WSN. The resource limitations of the sensor nodes make the conventional security systems less attractive for WSN. Moreover, conventional cryptography alone cannot ensure the desired security against the physical attacks on sensor nodes. Physically unclonable function (PUF) is an emerging hardware security primitive that provides low-cost hardware security exploiting the unique inherent randomness of a device. In this article, we have proposed an authentication and key sharing scheme for the WSN integrating Pedersen’s verifiable secret sharing (Pedersen’s VSS) and Shamir’s secret sharing (Shamir’s SS) scheme with PUF which ensure the desired security with low overhead. The security analysis depicts the resilience of the proposed scheme against different active, passive and physical attacks. Also, the performance analysis shows that the proposed scheme possesses low computation, communication and storage overhead. The scheme only needs to store a polynomial number of PUF challenge-response pairs to the user node. The sink or senor nodes do not require storing any secret key. Finally, the comparison with the previous protocols establishes the dominance of the proposed scheme to use in WSN.


2022 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Yelena Trofimova ◽  
Pavel Tvrdík

In wireless ad hoc networks, security and communication challenges are frequently addressed by deploying a trust mechanism. A number of approaches for evaluating trust of ad hoc network nodes have been proposed, including the one that uses neural networks. We proposed to use packet delivery ratios as input to the neural network. In this article, we present a new method, called TARA (Trust-Aware Reactive Ad Hoc routing), to incorporate node trusts into reactive ad hoc routing protocols. The novelty of the TARA method is that it does not require changes to the routing protocol itself. Instead, it influences the routing choice from outside by delaying the route request messages of untrusted nodes. The performance of the method was evaluated on the use case of sensor nodes sending data to a sink node. The experiments showed that the method improves the packet delivery ratio in the network by about 70%. Performance analysis of the TARA method provided recommendations for its application in a particular ad hoc network.


2022 ◽  
Vol 2022 ◽  
pp. 1-25
Author(s):  
Gang Liu ◽  
Zhaobin Liu ◽  
Victor S. Sheng ◽  
Liang Zhang ◽  
Yuanfeng Yang

In wireless sensor network (WSN), the energy of sensor nodes is limited. Designing efficient routing method for reducing energy consumption and extending the WSN’s lifetime is important. This paper proposes a novel energy-efficient, static scenario-oriented routing method of WSN based on edge computing named the NEER, in which WSN is divided into several areas according to the coverage of gateway (or base station), and each of the areas is regarded as an edge area network (EAN). Each edge area network is abstracted into a weighted undirected graph model combined with the residual energy of the sensor nodes. The base station (or a gateway) calculates the optimal energy consumption path for all sensor nodes within its coverage, and the nodes then perform data transmission through their suggested optimal paths. The proposed method is verified by the simulations, and the results show that the proposed method may consume about 37% less energy compared with the conventional WSN routing protocol and can also effectively extend the lifetime of WSN.


Author(s):  
Shiva Kumar V. ◽  
Rajashree V. Biradar ◽  
V. C. Patil

the technology of wireless sensor-actuator networks (WSANs) is widely employed in the applications of IoT due to its wireless nature and it does not involve any wired structure. The wireless systems that are battery-driven can easily reconfigure the existing devices and sensors efficiently in the manufacturing units without employing any cable for power operation as well as for communication. The wireless sensor-actuator networks that are based on IEEE 802.15.4 consumes significantly less power. These networks are designed and built cost-effectively by considering the capacity of battery and expense so that they can be employed for many applications. The application of a typical wireless Autonomous Scheduling and Distributed Graph Routing (DDSR) has illustrated the reliability of employing its basic approaches for almost ten years and it consists of the accurate plot for routing and time-slotted channel hopping therefore ensuring accurate low-power wireless communication in the processing site. Officially declared by the controversial statements associated with the government of Greek experiences fourth industrialization. There is a huge requirement for sensor nodes link via WSAN in the industrial site. Also, reduced computational complexity is one of the drawbacks faced by the existing standards of WSAN which is caused because of their highly centralized traffic management systems and thereby significantly improves the consistency and accessibility of network operations at the expense of optimization. This research work enables the study of efficient Wireless DGR network management and also introduces an alternative for DDSR by enabling the sensor nodes to determine their data traffic routes for the transmission of data. When compared to the above two physical routing protocols, the proposed technique can drastically improve the performance of a network, throughput, and energy consumption under various aspects. Energy harvesting (EH) plays a significant role in the implementation of large IoT devices. The requirement for subsequent employment of power sources is eliminated by The efficient approach of Energy Harvesting and thereby providing a relatively close- perpetual working environment for the network. The structural concept of routing protocols that are designed for the IoT applications which are based on the wireless sensor has been transformed into "energy-harvesting-aware" from the concept of "energy-aware" because of the development in the Energy harvesting techniques. The main objective of the research work is to propose a routing protocol that is energy-harvesting-aware for the various network of IoT in case of acoustic sources of energy. A novel algorithm for routing called Autonomous Scheduling and Distributed Graph Routing (DDSR) has been developed and significantly improved by incorporating a new “energy back-off” factor. The proposed algorithm when integrated with various techniques of energy harvesting enhances the longevity of nodes, quality of service of a network under increased differential traffic, and factors influencing the accessibility of energy. The research work analyses the performance of the system for various constraints of energy harvesting. When compared to previous routing protocols the proposed algorithm achieves very good energy efficiency in the network of distributed IoT by fulfilling the requirements of QoS.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 478
Author(s):  
Xiao Yan ◽  
Cheng Huang ◽  
Jianyuan Gan ◽  
Xiaobei Wu

Energy efficiency is one of the critical challenges in wireless sensor networks (WSNs). WSNs collect and transmit data through sensor nodes. However, the energy carried by the sensor nodes is limited. The sensor nodes need to save energy as much as possible to prolong the network lifetime. This paper proposes a game theory-based energy-efficient clustering algorithm (GEC) for wireless sensor networks, where each sensor node is regarded as a player in the game. According to the length of idle listening time in the active state, the sensor node can adopt favorable strategies for itself, and then decide whether to sleep or not. In order to avoid the selfish behavior of sensor nodes, a penalty mechanism is introduced to force the sensor nodes to adopt cooperative strategies in future operations. The simulation results show that the use of game theory can effectively save the energy consumption of the sensor network and increase the amount of network data transmission, so as to achieve the purpose of prolonging the network lifetime.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Pratap Singh ◽  
Rishi Pal Singh ◽  
Yudhvir Singh ◽  
Jasgurpreet Singh Chohan ◽  
Shubham Sharma ◽  
...  

Wireless sensor networks (WSNs) especially with sensor nodes communicating with each other in medium other than air have been naive area of research since the last few years. In comparison to underwater communication, wireless underground sensor networks (WUSNs) are now being used in a large number of applications ranging from environmental observation, estimating chances of earthquake, communicating in underground tunnels or mines, and infrastructure monitoring to soil monitoring for agricultural purposes. In spite of all such promising applications, due to harsh and dynamically changing soil characteristics including soil type, water content in soil, and soil temperature, underground communication with conventional electromagnetic (EM) wave-based technology could not prove to be feasible for long-distance communication. Alternatively, due to magnetic permeability of soil being similar to air, magnetic induction- (MI-) based approach was adopted using magnetic coils as antenna for sensor nodes. Subsequently, MI waveguide and 3D coil mechanisms were considered to improve the system efficiency. Attributing to different characteristics of underlying transmission channels, communication protocols as well as architecture of MI-based WUSNS (MI-WUSNs) have been developed with different approaches. In this review paper, in addition to the latest advancements made for MI-WUSNs, closely associated areas of MI-WUSNs have also been explored. Additionally, research areas which are still open to be worked upon have been detailed out.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 443
Author(s):  
Ildeberto Santos-Ruiz ◽  
Francisco-Ronay López-Estrada ◽  
Vicenç Puig ◽  
Guillermo Valencia-Palomo ◽  
Héctor-Ricardo Hernández

This paper presents a method for optimal pressure sensor placement in water distribution networks using information theory. The criterion for selecting the network nodes where to place the pressure sensors was that they provide the most useful information for locating leaks in the network. Considering that the node pressures measured by the sensors can be correlated (mutual information), a subset of sensor nodes in the network was chosen. The relevance of information was maximized, and information redundancy was minimized simultaneously. The selection of the nodes where to place the sensors was performed on datasets of pressure changes caused by multiple leak scenarios, which were synthetically generated by simulation using the EPANET software application. In order to select the optimal subset of nodes, the candidate nodes were ranked using a heuristic algorithm with quadratic computational cost, which made it time-efficient compared to other sensor placement algorithms. The sensor placement algorithm was implemented in MATLAB and tested on the Hanoi network. It was verified by exhaustive analysis that the selected nodes were the best combination to place the sensors and detect leaks.


Sign in / Sign up

Export Citation Format

Share Document