scholarly journals DFTSA-Net: Deep Feature Transfer-Based Stacked Autoencoder Network for DME Diagnosis

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1251
Author(s):  
Ghada Atteia ◽  
Nagwan Abdel Samee ◽  
Hassan Zohair Hassan

Diabetic macular edema (DME) is the most common cause of irreversible vision loss in diabetes patients. Early diagnosis of DME is necessary for effective treatment of the disease. Visual detection of DME in retinal screening images by ophthalmologists is a time-consuming process. Recently, many computer-aided diagnosis systems have been developed to assist doctors by detecting DME automatically. In this paper, a new deep feature transfer-based stacked autoencoder neural network system is proposed for the automatic diagnosis of DME in fundus images. The proposed system integrates the power of pretrained convolutional neural networks as automatic feature extractors with the power of stacked autoencoders in feature selection and classification. Moreover, the system enables extracting a large set of features from a small input dataset using four standard pretrained deep networks: ResNet-50, SqueezeNet, Inception-v3, and GoogLeNet. The most informative features are then selected by a stacked autoencoder neural network. The stacked network is trained in a semi-supervised manner and is used for the classification of DME. It is found that the introduced system achieves a maximum classification accuracy of 96.8%, sensitivity of 97.5%, and specificity of 95.5%. The proposed system shows a superior performance over the original pretrained network classifiers and state-of-the-art findings.

Author(s):  
Qi Xin ◽  
Shaohao Hu ◽  
Shuaiqi Liu ◽  
Ling Zhao ◽  
Shuihua Wang

As one of the important tools of epilepsy diagnosis, the electroencephalogram (EEG) is noninvasive and presents no traumatic injury to patients. It contains a lot of physiological and pathological information that is easy to obtain. The automatic classification of epileptic EEG is important in the diagnosis and therapeutic efficacy of epileptics. In this article, an explainable graph feature convolutional neural network named WTRPNet is proposed for epileptic EEG classification. Since WTRPNet is constructed by a recurrence plot in the wavelet domain, it can fully obtain the graph feature of the EEG signal, which is established by an explainable graph features extracted layer called WTRP block . The proposed method shows superior performance over state-of-the-art methods. Experimental results show that our algorithm has achieved an accuracy of 99.67% in classification of focal and nonfocal epileptic EEG, which proves the effectiveness of the classification and detection of epileptic EEG.


Author(s):  
Sudipto Trivedy ◽  
Manish Goyal ◽  
Madhusudhan Mishra ◽  
Narsingh Verma ◽  
Anirban Mukherjee

Author(s):  
Yasir Eltigani Ali Mustaf ◽  
◽  
Bashir Hassan Ismail ◽  

Diagnosis of diabetic retinopathy (DR) via images of colour fundus requires experienced clinicians to determine the presence and importance of a large number of small characteristics. This work proposes and named Adapted Stacked Auto Encoder (ASAE-DNN) a novel deep learning framework for diabetic retinopathy (DR), three hidden layers have been used to extract features and classify them then use a Softmax classification. The models proposed are checked on Messidor's data set, including 800 training images and 150 test images. Exactness, accuracy, time, recall and calculation are assessed for the outcomes of the proposed models. The results of these studies show that the model ASAE-DNN was 97% accurate.


Sign in / Sign up

Export Citation Format

Share Document