scholarly journals Justifying Born’s Rule Pα = |Ψα|2 Using Deterministic Chaos, Decoherence, and the de Broglie-Bohm Quantum Theory

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1371
Author(s):  
Aurélien Drezet

In this work, we derive Born’s rule from the pilot-wave theory of de Broglie and Bohm. Based on a toy model involving a particle coupled to an environment made of “qubits” (i.e., Bohmian pointers), we show that entanglement together with deterministic chaos leads to a fast relaxation from any statistical distribution ρ(x) of finding a particle at point x to the Born probability law |Ψ(x)|2. Our model is discussed in the context of Boltzmann’s kinetic theory, and we demonstrate a kind of H theorem for the relaxation to the quantum equilibrium regime.

Author(s):  
Mohamed Hatifi ◽  
Ralph Willox ◽  
Samuel Colin ◽  
Thomas Durt

Recently, the properties of bouncing oil droplets, also known as `walkers', have attracted much attention because they are thought to offer a gateway to a better understanding of quantum behaviour. They indeed constitute a macroscopic realization of wave-particle duality, in the sense that their trajectories are guided by a self-generated surrounding wave. The aim of this paper is to try to describe walker phenomenology in terms of de Broglie-Bohm dynamics and of a stochastic version thereof. In particular, we first study how a stochastic modification of the de Broglie pilot-wave theory, à la Nelson, affects the process of relaxation to quantum equilibrium, and we prove an H-theorem for the relaxation to quantum equilibrium under Nelson-type dynamics. We then compare the onset of equilibrium in the stochastic and the de Broglie-Bohm approaches and we propose some simple experiments by which one can test the applicability of our theory to the context of bouncing oil droplets. Finally, we compare our theory to actual observations of walker behavior in a 2D harmonic potential well.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 780 ◽  
Author(s):  
Mohamed Hatifi ◽  
Ralph Willox ◽  
Samuel Colin ◽  
Thomas Durt

Recently, the properties of bouncing oil droplets, also known as “walkers,” have attracted much attention because they are thought to offer a gateway to a better understanding of quantum behavior. They indeed constitute a macroscopic realization of wave-particle duality, in the sense that their trajectories are guided by a self-generated surrounding wave. The aim of this paper is to try to describe walker phenomenology in terms of de Broglie–Bohm dynamics and of a stochastic version thereof. In particular, we first study how a stochastic modification of the de Broglie pilot-wave theory, à la Nelson, affects the process of relaxation to quantum equilibrium, and we prove an H-theorem for the relaxation to quantum equilibrium under Nelson-type dynamics. We then compare the onset of equilibrium in the stochastic and the de Broglie–Bohm approaches and we propose some simple experiments by which one can test the applicability of our theory to the context of bouncing oil droplets. Finally, we compare our theory to actual observations of walker behavior in a 2D harmonic potential well.


Author(s):  
Samuel Colin

Numerical simulations indicate that the Born rule does not need to be postulated in the de Broglie–Bohm pilot-wave theory, but tends to arise dynamically (relaxation to quantum equilibrium). These simulations were done for a particle in a two-dimensional box whose wave function obeys the non-relativistic Schrödinger equation and is therefore scalar. The chaotic nature of the de Broglie–Bohm trajectories, thanks to the nodes of the wave function which yield to vortices, is crucial for a fast relaxation to quantum equilibrium. For spinors, we typically do not expect any node. However, in the case of the Dirac equation, the de Broglie–Bohm velocity field has vorticity even in the absence of nodes. This observation raises the question of the origin of relaxation to quantum equilibrium for fermions. In this article, we provide numerical evidence to show that Dirac particles also undergo relaxation, by simulating the evolution of various non-equilibrium distributions for two-dimensional systems (the two-dimensional Dirac oscillator and the Dirac particle in a two-dimensional spherical step potential).


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mariya Iv. Trukhanova ◽  
Gennady Shipov

Abstract Using the hydrodynamical formalism of quantum mechanics for a Schrödinger spinning particle developed by Takabayashi, Vigier, and followers, which involves vortical flows, we propose a new geometrical interpretation of the pilot wave theory. The spinor wave in this interpretation represents an objectively real field, and the evolution of a material particle controlled by the wave is a manifestation of the geometry of space. We assume this field to have a geometrical nature, basing on the idea that the intrinsic angular momentum, the spin, modifies the geometry of the space, which becomes a manifold, represented as a vector bundle with a base formed by the translational coordinates and time, and the fiber of the bundle, specified at each point by the field of a tetrad $e^a_{\mu}$, forms from bilinear combinations of the spinor wave function. It has been shown that the spin vector rotates following the geodesic of the space with torsion, and the particle moves according to the geometrized guidance equation. This fact explains the self-action of the spinning particle. We show that the curvature and torsion of the spin vector line is determined by the space torsion of the absolute parallelism geometry.


Sign in / Sign up

Export Citation Format

Share Document