scholarly journals Event-Triggered and Memory-Based Sliding Mode Variable Structure Control for Memristive Systems

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 253 ◽  
Author(s):  
Bo-Chao Zheng ◽  
Shumin Fei ◽  
Xiaoguang Liu

This paper is concerned with a novel event-triggered sliding mode variable structure control (ESMC) scheme to achieve robust stabilization of memristive systems (MSs). First, a memory-based sliding surface, including the past and the current information of the system states, is introduced. Two switching gain matrices of such kinds of switching surfaces, which satisfy the guaranteed cost performance of the sliding reduced order dynamics, are achieved by employing linear matrix inequality techniques. Second, a sliding mode controller using an event-triggered mechanism is constructed to ensure that the trajectories of the uncertain MS slide towards the proposed memory-based switching hyperplane, and thus, the stabilization of entire MSs is reached. Finally, the effectiveness of the proposed results is demonstrated through simulations.

2016 ◽  
Vol 3 (1) ◽  
pp. 81
Author(s):  
Bach Hoang Dinh ◽  
Van Van Huynh

This paper proposes an adaptive variable structure control (VSC) for a class of mismatched uncertain systems with unknown disturbances. First, a necessary and sufficient condition in terms of linear matrix inequalities is proposed to guarantee the system in sliding mode is asymptotically stable. Second, an adaptive output feedback variable structure controller is designed to force the system states reach the sliding surface and stay on it thereafter. Finally, the advantages and effectiveness of the proposed approaches are demonstrated via a numerical example.


2018 ◽  
Vol 37 (4) ◽  
pp. 1176-1187
Author(s):  
Xianglong Wen ◽  
Kang Yi ◽  
Chunsheng Song ◽  
Jinguang Zhang

The frequency components of vibration signal in vibration isolation system under multiple excitations are quite complex.Self-adaptive feedforward control method based on Least Mean Square algorithm has strict requirements for reference signal, which results in a certain restriction on its practical application. Sliding mode variable structure control method needs neither complicated reference signal nor accurate mathematical model. It has the strong robustness for external disturbance and system parameter perturbation, and the physical implementation is simple. To this end, application of sliding mode variable structure control method is studied. First, mathematical model of the control channel through system is established for identification. Second, the discrete sliding mode variable structure controller based on state-space model is designed to carry out simulation and experiment. The experimental result indicates that root mean square value of vibration signal after control is decreased by 57.90%, of which the amplitudes of two main frequency components 17 and 25 Hz reduce by 42.66 and 72.71%, respectively. This shows that sliding mode variable structure control is an effective control method for active vibration isolation of floating raft under multiple excitations.


Sign in / Sign up

Export Citation Format

Share Document