memristive systems
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 1)

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3176
Author(s):  
Xiaoyue Ji ◽  
Zhekang Dong ◽  
Guangdong Zhou ◽  
Chun Sing Lai ◽  
Yunfeng Yan ◽  
...  

As the acquisition, transmission, storage and conversion of images become more efficient, image data are increasing explosively. At the same time, the limitations of conventional computational processing systems based on the Von Neumann architecture continue to emerge, and thus, improving the efficiency of image processing has become a key issue that has bothered scholars working on images for a long time. Memristors with non-volatile, synapse-like, as well as integrated storage-and-computation properties can be used to build intelligent processing systems that are closer to the structure and function of biological brains. They are also of great significance when constructing new intelligent image processing systems with non-Von Neumann architecture and for achieving the integrated storage and computation of image data. Based on this, this paper analyses the mathematical models of memristors and discusses their applications in conventional image processing based on memristive systems as well as image processing based on memristive neural networks, to investigate the potential of memristive systems in image processing. In addition, recent advances and implications of memristive system-based image processing are presented comprehensively, and its development opportunities and challenges in different major areas are explored as well. By establishing a complete spectrum of image processing technologies based on memristive systems, this review attempts to provide a reference for future studies in the field, and it is hoped that scholars can promote its development through interdisciplinary academic exchanges and cooperation.


Author(s):  
Sanjay Kumar ◽  
Rajan Agrawal ◽  
Mangal Das ◽  
Kumari Jyoti ◽  
Pawan Kumar ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Seongae Park ◽  
Stefan Klett ◽  
Tzvetan Ivanov ◽  
Andrea Knauer ◽  
Joachim Doell ◽  
...  

Memristive devices have led to an increased interest in neuromorphic systems. However, different device requirements are needed for the multitude of computation schemes used there. While linear and time-independent conductance modulation is required for machine learning, non-linear and time-dependent properties are necessary for neurobiologically realistic learning schemes. In this context, an adaptation of the resistance switching characteristic is necessary with regard to the desired application. Recently, bi-layer oxide memristive systems have proven to be a suitable device structure for this purpose, as they combine the possibility of a tailored memristive characteristic with low power consumption and uniformity of the device performance. However, this requires technological solutions that allow for precise adjustment of layer thicknesses, defect densities in the oxide layers, and suitable area sizes of the active part of the devices. For this purpose, we have investigated the bi-layer oxide system TiN/TiOx/HfOx/Au with respect to tailored I-V non-linearity, the number of resistance states, electroforming, and operating voltages. Therefore, a 4-inch full device wafer process was used. This process allows a systematic investigation, i.e., the variation of physical device parameters across the wafer as well as a statistical evaluation of the electrical properties with regard to the variability from device to device and from cycle to cycle. For the investigation, the thickness of the HfOx layer was varied between 2 and 8 nm, and the size of the active area of devices was changed between 100 and 2,500 µm2. Furthermore, the influence of the HfOx deposition condition was investigated, which influences the conduction mechanisms from a volume-based, filamentary to an interface-based resistive switching mechanism. Our experimental results are supported by numerical simulations that show the contribution of the HfOx film in the bi-layer memristive system and guide the development of a targeting device.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiajuan Shi ◽  
Zhongqiang Wang ◽  
Ye Tao ◽  
Haiyang Xu ◽  
Xiaoning Zhao ◽  
...  

A neuromorphic computing chip that can imitate the human brain’s ability to process multiple types of data simultaneously could fundamentally innovate and improve the von-neumann computer architecture, which has been criticized. Memristive devices are among the best hardware units for building neuromorphic intelligence systems due to the fact that they operate at an inherent low voltage, use multi-bit storage, and are cost-effective to manufacture. However, as a passive device, the memristor cell needs external energy to operate, resulting in high power consumption and complicated circuit structure. Recently, an emerging self-powered memristive system, which mainly consists of a memristor and an electric nanogenerator, had the potential to perfectly solve the above problems. It has attracted great interest due to the advantages of its power-free operations. In this review, we give a systematic description of self-powered memristive systems from storage to neuromorphic computing. The review also proves a perspective on the application of artificial intelligence with the self-powered memristive system.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sueda Saylan ◽  
Haila M. Aldosari ◽  
Khaled Humood ◽  
Maguy Abi Jaoude ◽  
Florent Ravaux ◽  
...  

Abstract This work provides useful insights into the development of HfO2-based memristive systems with a p-type silicon bottom electrode that are compatible with the complementary metal–oxide–semiconductor technology. The results obtained reveal the importance of the top electrode selection to achieve unique device characteristics. The Ag/HfO2/Si devices have exhibited a larger memory window and self-compliance characteristics. On the other hand, the Au/HfO2/Si devices have displayed substantial cycle-to-cycle variation in the ON-state conductance. These device characteristics can be used as an indicator for the design of resistive-switching devices in various scenes such as, memory, security, and sensing. The current–voltage (I–V) characteristics of Ag/HfO2/Si and Au/HfO2/Si devices under positive and negative bias conditions have provided valuable information on the ON and OFF states of the devices and the underlying resistive switching mechanisms. Repeatable, low-power, and forming-free bipolar resistive switching is obtained with both device structures, with the Au/HfO2/Si devices displaying a poorer device-to-device reproducibility. Furthermore, the Au/HfO2/Si devices have exhibited N-type negative differential resistance (NDR), suggesting Joule-heating activated migration of oxygen vacancies to be responsible for the SET process in the unstable unipolar mode.


2020 ◽  
Vol 6 (19) ◽  
pp. eaaz9079 ◽  
Author(s):  
M. Lübben ◽  
F. Cüppers ◽  
J. Mohr ◽  
M. von Witzleben ◽  
U. Breuer ◽  
...  

Future development of the modern nanoelectronics and its flagships internet of things, artificial intelligence, and neuromorphic computing is largely associated with memristive elements, offering a spectrum of inevitable functionalities, atomic level scalability, and low-power operation. However, their development is limited by significant variability and still phenomenologically orientated materials’ design strategy. Here, we highlight the vital importance of materials’ purity, demonstrating that even parts-per-million foreign elements substantially change performance. Appropriate choice of chemistry and amount of doping element selectively enhances the desired functionality. Dopant/impurity-dependent structure and charge/potential distribution in the space-charge layers and cell capacitance determine the device kinetics and functions. The relation between chemical composition/purity and switching/neuromorphic performance is experimentally evidenced, providing directions for a rational design of future memristive devices.


2020 ◽  
Vol 34 (09) ◽  
pp. 2050074
Author(s):  
Siyu Ma ◽  
Ping Zhou ◽  
Jun Ma ◽  
Chunni Wang

A variety of electric components can be used to bridge connection to the nonlinear circuits, and continuous pumping and consumption of energy are critical for voltage balance between the output end. The realization and stability of synchronization are mainly dependent on the physical properties of coupling channel, which can be built by using different electric components such as resistor, capacitor, induction coil and even memristor. In this paper, a memristive nonlinear circuit developed from Chua circuit is presented for investigation of synchronization, and capacitor, induction coil are jointed with resistor for building artificial synapse which connects one output of two identical memristive circuits. The capacitance and inductance of the coupling channel are carefully adjusted with slight step increase to estimate the threshold of coupling intensity supporting complete synchronization. As a result, the saturation gain method applied to realize the synchronization between chaotic circuits and physical mechanism is presented.


Sign in / Sign up

Export Citation Format

Share Document