scholarly journals An Adaptive Current Limiting Controller for a Wireless Power Transmission System Energized by a PV Generator

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1648
Author(s):  
Ali Jafer Mahdi ◽  
Shah Fahad ◽  
Wenhu Tang

The use of a wireless power transmission system (WPTS) in modern applications, such as consumer electronics, renewable energy sources (RESs) and electric vehicles (EVs), can significantly increase the safety and convenience of the power supply. However, low efficiency is a major hurdle to the use of a WPTS in these applications. In this article, an adaptive virtual impedance controller (AVIC) is presented to enhance the wireless power transfer (WPT) efficiency of a photovoltaic generator (PVG) to the load. In the proposed controller, a unique method is employed to adaptively estimate the coefficient of coupling and resonant frequency of the WPTS coils as a function of the distance between the coils. Moreover, a modified incremental conductance (IC) based maximum power tracking (MIC-MPPT) technique is presented to operate the PVG at MPPT mode. The proposed MIC-MPPT is tested via a hardware prototype and the controller validation is carried out in the MATLAB/SIMULINK environment under various uncertainties, such as intermittent irradiance, variable load, and the distance between transmitter (Tx) and receiver (Rx) coils. Finally, a comparative analysis between the proposed controller and the conventional non-adaptive and adaptive resonant frequency controller is presented which confirms the superiority of the proposed controller.

2012 ◽  
Vol 468-471 ◽  
pp. 2854-2858
Author(s):  
Wei Xin Li ◽  
He Zhang

In order to study on the relationship between transmission parameters and transmission performance of wireless power transmission system based on the basic principles of magnetic resonant coupling, because of magnetic induction coupling with low-efficiency and short-distance, the basic circuit model of wireless power transmission system via Strongly Coupled Magnetic Resonances was analyzed. The expression of the parameters such as relationships between efficiency, frequency and distance was derived. Further more, the experiment of wireless power transmission system was designed based on the results of the analysis. At last, the results of experiment show that the theoretical derivation is correct and all the system is affected by the transmission parameters.


2012 ◽  
Vol 591-593 ◽  
pp. 1164-1167
Author(s):  
Wei Xin Li ◽  
He Zhang

In order to research the relationship between coupling distance and transmission efficiency, study on the transmission characteristics of magnetic resonant coupling for wireless power transmission system, simulation model of wireless power transmission system via magnetic resonance coupling were established based on the theory of two ports network analysis method. The frequency expression of maximum efficiency and the resonant frequency splitting phenomenon condition of a contact-less power transmission system were derived. In a weak coupling at resonance, magnetic resonant coupling can transfer energy with high efficiency. The resonant frequency changes from two to one depending on the critical condition. Until a certain distance, maximum efficiencies are not got. The transmission characteristics of this system were researched by simulation software and experiments. The results show that the transmission characteristics are consistent with theoretical analysis and simulation.


2021 ◽  
Vol 7 ◽  
pp. 411-418
Author(s):  
Jiawen Peng ◽  
Liyan Zhang ◽  
Qihong Chen ◽  
Rong Long ◽  
Keliang Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document