scholarly journals Power Loss Minimization and Voltage Stability Improvement in Electrical Distribution System via Network Reconfiguration and Distributed Generation Placement Using Novel Adaptive Shuffled Frogs Leaping Algorithm

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 553 ◽  
Author(s):  
Arun Onlam ◽  
Daranpob Yodphet ◽  
Rongrit Chatthaworn ◽  
Chayada Surawanitkun ◽  
Apirat Siritaratiwat ◽  
...  

This paper proposes a novel adaptive optimization algorithm to solve the network reconfiguration and distributed generation (DG) placement problems with objective functions including power loss minimization and voltage stability index (VSI) improvement. The proposed technique called Adaptive Shuffled Frogs Leaping Algorithm (ASFLA) was performed for solving network reconfiguration and DG installation in IEEE 33- and 69-bus distribution systems with seven different scenarios. The performance of ASFLA was compared to that of other algorithms such as Fireworks Algorithm (FWA), Adaptive Cuckoo Search Algorithm (ACSA) and Shuffled Frogs Leaping Algorithm (SFLA). It was found that the power loss and VSI provided by ASFLA were better than those given by FWA, ACSA and SFLA in both 33- and 69-bus systems. The best solution of power loss reduction and VSI improvement of both 33- and 69-bus systems was achieved when the network reconfiguration with optimal sizing and the location DG were simultaneously implemented. From our analysis, it was indicated that the ASFLA could provide better solutions than other methods since the generating process, local and global searching of this algorithm were significantly improved from a conventional method. Hence, the ASFLA becomes another effective algorithm for solving network reconfiguration and DG placement problems in electrical distribution systems.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Thuan Thanh Nguyen ◽  
Thang Trung Nguyen ◽  
Ngoc Au Nguyen

In this paper, an effective method to determine an initial searching point (ISP) of the network reconfiguration (NR) problem for power loss reduction is proposed for improving the efficiency of the continuous genetic algorithm (CGA) to the NR problem. The idea of the method is to close each initial open switch in turn and solve power flow for the distribution system with the presence of a closed loop to choose a switch with the smallest current in the closed loop for opening. If the radial topology constraint of the distribution system is satisfied, the switch opened is considered as a control variable of the ISP. Then, ISP is attached to the initial population of CGA. The calculated results from the different distribution systems show that the proposed CGA using ISP could reach the optimal radial topology with better successful rate and obtained solution quality than the method based on CGA using the initial population generated randomly and the method based on CGA using the initial radial configuration attached to the initial population. As a result, CGA using ISP can be a favorable method for finding a more effective radial topology in operating distribution systems.


Author(s):  
A. V. Sudhakara Reddy ◽  
M. Damodar Reddy ◽  
M. Satish Kumar Reddy

This manuscript presents a feeder reconfiguration in primary distribution networks with an objective of minimizing the real power loss or maximization of power loss reduction. An optimal switching for the network reconfiguration problem is introduced in this article based on step by step switching and simultaneous switching. This paper proposes a Grey Wolf Optimization (GWO) algorithm to solve the feeder reconfiguration problem through fitness function corresponding to optimum combination of switches in power distribution systems. The objective function is formulated to solve the reconfiguration problem which includes minimization of real power loss. A nature inspired Grey Wolf Optimization Algorithm is utilized to restructure the power distribution system and identify the optimal switches corresponding minimum power loss in the distribution network. The GWO technique has tested on standard IEEE 33-bus and 69-bus systems and the results are presented.


Author(s):  
Ahmed Mohamed Abdelbaset ◽  
AboulFotouh A. Mohamed ◽  
Essam Abou El-Zahab ◽  
M. A. Moustafa Hassan

<p><span>With the widespread of using distributed generation, the connection of DGs in the distribution system causes miscoordination between protective devices. This paper introduces the problems associated with recloser fuse miscoordination (RFM) in the presence of single and multiple DG in a radial distribution system. Two Multi objective optimization problems are presented. The first is based on technical impacts to determine the optimal size and location of DG considering system power loss reduction and enhancement the voltage profile with a certain constraints and the second is used for minimizing the operating time of all fuses and recloser with obtaining the optimum settings of fuse recloser coordination characteristics. Whale Optimizer algorithm (WOA) emulated RFM as an optimization problem. The performance of the proposed methodology is applied to the standard IEEE 33 node test system. The results show the robustness of the proposed algorithm for solving the RFM problem with achieving system power loss reduction and voltage profile enhancement.</span></p>


Sign in / Sign up

Export Citation Format

Share Document