scholarly journals Dynamic Mode Decomposition Analysis of Spatially Agglomerated Flow Databases

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2134
Author(s):  
Binghua Li ◽  
Jesús Garicano-Mena ◽  
Yao Zheng ◽  
Eusebio Valero

Dynamic Mode Decomposition (DMD) techniques have risen as prominent feature identification methods in the field of fluid dynamics. Any of the multiple variables of the DMD method allows to identify meaningful features from either experimental or numerical flow data on a data-driven manner. Performing a DMD analysis requires handling matrices V ∈ R n p × N , where n p and N are indicative of the spatial and temporal resolutions. The DMD analysis of a complex flow field requires long temporal sequences of well resolved data, and thus the memory footprint may become prohibitively large. In this contribution, the effect that principled spatial agglomeration (i.e., reduction in n p via clustering) has on the results derived from the DMD analysis is investigated. We compare twelve different clustering algorithms on three testcases, encompassing different flow regimes: a synthetic flow field, a R e D = 60 flow around a cylinder cross section, and a R e τ ≈ 200 turbulent channel flow. The performance of the clustering techniques is thoroughly assessed concerning both the accuracy of the results retrieved and the computational performance. From this assessment, we identify DBSCAN/HDBSCAN as the methods to be used if only relatively high agglomeration levels are affordable. On the contrary, Mini-batch K-means arises as the method of choice whenever high agglomeration n p ˜ / n p ≪ 1 is possible.

Author(s):  
Kai Zhang ◽  
AJ Wang

In order to ensure flight safety, the stall test is one of the most important steps in the airworthiness certification phase of civil aircraft. The twisted-swept fan is one of the most important components of the high bypass ratio engine. The unsteady flow field of the fan rotor stall condition is obtained by numerical simulation. At the same time, the time series flow field data of the stall condition flow field is acquired. The modal analysis of the unsteady flow field at stall condition was performed using the dynamic mode decomposition and proper orthogonal decomposition methods. Through modal identification of a large number of unsteady flow field data, the eigenvalues and corresponding modal information about the unsteady flow field change process are obtained. Finally, the evolution process of the unsteady flow field of the fan rotor under stall condition is visually demonstrated, and the coherent structures of different scales in the complex flow field under stall condition are revealed.


2020 ◽  
Author(s):  
Christian Amor ◽  
José M Pérez ◽  
Philipp Schlatter ◽  
Ricardo Vinuesa ◽  
Soledad Le Clainche

Abstract This article introduces some soft computing methods generally used for data analysis and flow pattern detection in fluid dynamics. These techniques decompose the original flow field as an expansion of modes, which can be either orthogonal in time (variants of dynamic mode decomposition), or in space (variants of proper orthogonal decomposition) or in time and space (spectral proper orthogonal decomposition), or they can simply be selected using some sophisticated statistical techniques (empirical mode decomposition). The performance of these methods is tested in the turbulent wake of a wall-mounted square cylinder. This highly complex flow is suitable to show the ability of the aforementioned methods to reduce the degrees of freedom of the original data by only retaining the large scales in the flow. The main result is a reduced-order model of the original flow case, based on a low number of modes. A deep discussion is carried out about how to choose the most computationally efficient method to obtain suitable reduced-order models of the flow. The techniques introduced in this article are data-driven methods that could be applied to model any type of non-linear dynamical system, including numerical and experimental databases.


2021 ◽  
Vol 62 (4) ◽  
Author(s):  
Antje Feldhusen-Hoffmann ◽  
Christian Lagemann ◽  
Simon Loosen ◽  
Pascal Meysonnat ◽  
Michael Klaas ◽  
...  

AbstractThe buffet flow field around supercritical airfoils is dominated by self-sustained shock wave oscillations on the suction side of the wing. Theories assume that this unsteadiness is driven by a feedback loop of disturbances in the flow field downstream of the shock wave whose upstream propagating part is generated by acoustic waves. High-speed particle-image velocimetry measurements are performed to investigate this feedback loop in transonic buffet flow over a supercritical DRA 2303 airfoil. The freestream Mach number is $$M_{\infty } = 0.73$$ M ∞ = 0.73 , the angle of attack is $$\alpha = 3.5^{\circ }$$ α = 3 . 5 ∘ , and the chord-based Reynolds number is $${\mathrm{Re}}_{c} = 1.9\times 10^6$$ Re c = 1.9 × 10 6 . The obtained velocity fields are processed by sparsity-promoting dynamic mode decomposition to identify the dominant dynamic features contributing strongest to the buffet flow field. Two pronounced dynamic modes are found which confirm the presence of two main features of the proposed feedback loop. One mode is related to the shock wave oscillation frequency and its shape includes the movement of the shock wave and the coupled pulsation of the recirculation region downstream of the shock wave. The other pronounced mode represents the disturbances which form the downstream propagating part of the proposed feedback loop. The frequency of this mode corresponds to the frequency of the acoustic waves which are generated by these downstream traveling disturbances and which form the upstream propagating part of the proposed feedback loop. In this study, the post-processing, i.e., the DMD, is highlighted to substantiate the existence of this vortex mode. It is this vortex mode that via the Lamb vector excites the shock oscillations. The measurement data based DMD results confirm numerical findings, i.e., the dominant buffet and vortex modes are in good agreement with the feedback loop suggested by Lee. Graphic abstract


2020 ◽  
Vol 105 (3) ◽  
pp. 699-713 ◽  
Author(s):  
Hadrien Calmet ◽  
Daniel Pastrana ◽  
Oriol Lehmkuhl ◽  
Takahisa Yamamoto ◽  
Yoshiki Kobayashi ◽  
...  

2019 ◽  
Vol 11 (6) ◽  
pp. 063307
Author(s):  
Mohammad Hossein Naderi ◽  
Mojtaba Tahani ◽  
Vahid Esfahanian

2017 ◽  
Vol 2017.66 (0) ◽  
pp. 423
Author(s):  
Yuta MAEKAWA ◽  
Yasumasa ITO ◽  
Yasuhiko SAKAI ◽  
Koji IWANO ◽  
Koji NAGATA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document