scholarly journals Doubly Fed Induction Generator Open Stator Synchronized Control during Unbalanced Grid Voltage Condition

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3155
Author(s):  
Akrama Khan ◽  
Xiao Ming Hu ◽  
Mohamed Azeem Khan ◽  
Paul Barendse

In this paper, a systematic synchronization procedure is proposed for a doubly fed induction generator (DFIG) during unbalanced grid voltage conditions. The initial induced voltage at the open stator terminal is required to synchronize with the grid voltage in magnitude, frequency and phase. An open stator negative sequence rotor current controller is implemented with the conventional DFIG vector controller, which allows the induced stator voltage to become as unbalanced as the grid voltage, hence enabling a smooth connection. A brief comparison is provided for practical issues such as controller structure variation between DFIG open stator and normal operating conditions, and initial encoder rotor angle measurement offset. The procedure is validated experimentally on a 2.2 kW laboratory-scaled DFIG test bench.

2019 ◽  
Vol 43 (4) ◽  
pp. 377-391
Author(s):  
Meriem Ghodbane-Cherif ◽  
Sondes Skander-Mustapha ◽  
Ilhem Slama-Belkhodja

Recently, the massive integration of renewable energy sources, especially wind and solar ones, has attracted researchers to new issues such as power quality. In this context, this article deals with an improved deadbeat predictive control for parallel grid-connected doubly fed induction generator-based wind systems under unbalanced grid conditions. The impact of an asymmetrical voltage sag has been treated for a doubly fed induction generator- wind system with emphasis on the occurrence of the negative current. In the case of a micro-grid based on wind systems, the effect of this current increases with the line impedance and thereby the system location. An improved predictive deadbeat control technique is proposed for the rotor side converter to enhance the behaviour of the wind system. A dynamic modelling of the doubly fed induction generator in both positive and negative reference frames has been proposed to focus on the behaviour of the system for these various operating conditions. Results of different simulation scenarios prove the effectiveness of the proposed improved predictive deadbeat control.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 454 ◽  
Author(s):  
Imran Khan ◽  
Kamran Zeb ◽  
Waqar Din ◽  
Saif Islam ◽  
Muhammad Ishfaq ◽  
...  

High penetration of large capacity wind turbines into power grid has led to serious concern about its influence on the dynamic behaviors of the power system. Unbalanced grid voltage causing DC-voltage fluctuations and DC-link capacitor large harmonic current which results in degrading reliability and lifespan of capacitor used in voltage source converter. Furthermore, due to magnetic saturation in the generator and non-linear loads distorted active and reactive power delivered to the grid, violating grid code. This paper provides a detailed investigation of dynamic behavior and transient characteristics of Doubly Fed Induction Generator (DFIG) during grid faults and voltage sags. It also presents novel grid side controllers, Adaptive Proportional Integral Controller (API) and Proportional Resonant with Resonant Harmonic Compensator (PR+RHC) which eliminate the negative impact of unbalanced grid voltage on the DC-capacitor as well as achieving harmonic filtering by compensating harmonics which improve power quality. Proposed algorithm focuses on mitigation of harmonic currents and voltage fluctuation in DC-capacitor making capacitor more reliable under transient grid conditions as well as distorted active and reactive power delivered to the electric grid. MATLAB/Simulink simulation of 2 MW DFIG model with 1150 V DC-linked voltage has been considered for validating the effectiveness of proposed control algorithms. The proposed controllers performance authenticates robust, ripples free, and fault-tolerant capability. In addition, performance indices and Total Harmonic Distortions (THD) are also calculated to verify the robustness of the designed controller.


Sign in / Sign up

Export Citation Format

Share Document