angle measurement
Recently Published Documents


TOTAL DOCUMENTS

1856
(FIVE YEARS 490)

H-INDEX

47
(FIVE YEARS 5)

Author(s):  
Satoshi Inoue ◽  
Yoshiaki HATTORI ◽  
Masatoshi KITAMURA

Abstract A trimethylsilyl-monolayer modified by vacuum ultraviolet (VUV) light has been investigated for use in solution-processed organic thin-film transistors (OTFTs). The VUV irradiation changed a hydrophobic trimethylsilyl-monolayer formed from hexamethyldisilazane vapor into a hydrophilic surface suitable for solution processing. The treated surface was examined via water contact angle measurement and X-ray photoelectron spectroscopy. An appropriate irradiation of VUV light enabled the formation of a dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) film on a modified monolayer by spin-coating. Consequently, the C8-BTBT-based OTFT with a monolayer modified for an optimal VUV irradiation time exhibited a field-effect mobility up to 4.76 cm2 V−1 s−1. The partial monolayer modification with VUV can be adapted to a variety of solution-processes and organic semiconductors for prospective printed electronics.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Fadoua Bennouna ◽  
Moulay Sadiki ◽  
Soumya Elabed ◽  
Saad Ibnsouda Koraichi ◽  
Mohammed Lachkar

Despite having been used for ages to preserve wood against several effects (biological attack and moisture effects) that cause its degradation, the effect of vegetable oils on the cedar wood physicochemical properties is poorly known. Thus, in this study, the hydrophobicity, electron-acceptor (γ+), and electron-donor (γ−) properties of cedar wood before and after treatment with vegetable oils have been determined using contact angle measurement. The cedar wood has kept its hydrophobic character after treatment with the different vegetable oils. It has become more hydrophobic quantitatively with values of surface energy ranged from −25.84 to −43.45 mJ/m2 and more electron donors compared to the untreated sample. Moreover, the adhesion of four fungal strains (Penicillium commune (PDLd”), Thielavia hyalocarpa, Penicillium commune (PDLd10), and Aspergillus niger) on untreated and treated cedar wood was examined theoretically and experimentally. For untreated wood, the experimental adhesion showed a positive relationship with the results obtained by the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) approach which found that all fungal strains could adhere strongly to the cedar wood material. In contrast, this relationship was not always positive after treatment. The Environmental Scanning Electron Microscopy (ESEM) has shown that P. commune (PDLd10) and A. niger were found unable to adhere to the wood surface after treatment with sunflower and rapeseed oils. In addition, the results showed that the four fungal strains’ adhesion was decreased with olive and linseed oils treatment except that of P. commune (PDLd10) treated with linseed oil.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Taekyung Kim ◽  
Sunmok Kwon ◽  
Jeehyeon Lee ◽  
Joon Sang Lee ◽  
Shinill Kang

AbstractMetallic surface finishes have been used in the anti-biofouling, but it is very difficult to produce surfaces with hierarchically ordered structures. In the present study, anti-biofouling metallic surfaces with nanostructures superimposed on curved micro-riblets were produced via top-down fabrication. According to the attachment theory, these surfaces feature few attachment points for organisms, the nanostructures prevent the attachment of bacteria and algal zoospores, while the micro-riblets prohibit the settlement of macrofoulers. Anodic oxidation was performed to induce superhydrophilicity. It forms a hydration layer on the surface, which physically blocks foulant adsorption along with the anti-biofouling topography. We characterized the surfaces via scanning electron and atomic force microscopy, contact-angle measurement, and wear-resistance testing. The contact angle of the hierarchical structures was less than 1°. Laboratory settlement assays verified that bacterial attachment was dramatically reduced by the nanostructures and/or the hydration layer, attributable to superhydrophilicity. The micro-riblets prohibited the settlement of macrofoulers. Over 77 days of static immersion in the sea during summer, the metallic surface showed significantly less biofouling compared to a surface painted with an anticorrosive coating.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 370
Author(s):  
Hadi Gholamiyan ◽  
Behnam Gholampoor ◽  
Reza Hosseinpourpia

This research investigates the effect of plasma treatment with air, nitrogen (N2), and carbon dioxide (CO2) gases on the performance of waterborne (acrylic) and solvent-borne (polyester) coated fir (Abies alba M.) wood samples. The properties of the plasma-coated samples were analyzed before and after exposure to accelerated weathering and compared with those of untreated and solely treated ones. According to pull-off testing, the coating adhesion of the wood samples was considerably improved by plasma treatment, and obvious differences were observed between different plasma gases. The effect was more pronounced after the weathering test. Similar results were obtained for the abrasion resistance of the samples. The water contact angle measurement illustrated more hydrophilic character in the solely plasma-treated wood in comparison with the untreated wood. The application of coatings, however, strongly improved its hydrophobic character. The performances of waterborne and solvent-borne coatings on plasma-treated wood were comparable, although slightly better values were obtained by the waterborne system. Our results exhibit the positive effect of plasma treatment on coating performances and the increased weather resistance of the waterborne and solvent-borne coating systems on plasma-treated wood.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Gina Nam ◽  
Jae-Yen Song ◽  
Sa-Ra Lee

The aim of this study was to compare the data obtained by a pelvic organ prolapse quantification (POP-Q) examination with the translabial ultrasound (TLUS) quantification of prolapse, using a new method of angle measurement. We analyzed the TLUS and POP-Q exam findings of 452 patients with symptoms of POP. The POP-Q system was used for clinical staging. TLUS was performed both at rest, and during the Valsalva maneuver after proper preparation. A horizontal reference line was drawn through the inferior margin of the symphysis pubis and the levator plate connected to the rectal ampulla, and the difference was calculated between the rest and the Valsalva maneuver. The Spearman’s correlation coefficient of agreement between the TLUS and the clinical POP-Q staging was used for statistical analysis. There was a weak degree of correlation between the POP-Q findings for the Ap parameter and our new angle measurement (rho = 0.17, p < 0.001). Thus, POP staging in conjunction with TLUS with this new angle measurement shows better agreement for the diagnosis of POP than POP-Q staging alone.


2022 ◽  
Vol 134 (1031) ◽  
pp. 015003
Author(s):  
Yong Zhang ◽  
Guoping Li ◽  
Guohua Zhou ◽  
Qishuai Lu ◽  
Heng Zuo ◽  
...  

Abstract The surface accuracy of a large radio telescope’s primary reflector is easily affected by gravity and temperature change during observations. An active surface system is crucial to ensure the regular operation and high-quality data output of the radio telescope. We propose a real-time closed-loop active surface system including two components. The first component, a new type of photoelectric edge sensor, detects the angle change of the adjacent panels. The second component, the displacement actuator, adjusts the panels’ position and posture to compensate for the angle changes. So, over the entire observation, the closed-loop surface control system with these two components could actively maintain the primary reflector’s accuracy in real time. Using this approach, we constructed an experimental active surface system for the Xinjiang Qitai 110 m Radio Telescope (QTT) to test the maintenance of the surface accuracy. The angle measurement accuracy is better than 0.″2, and the positioning accuracy of the displacement actuator could achieve ±15 μm over the whole 50 mm stroke. The preliminary test results show that the accuracy requirements of the QTT’s primary reflector surface can be met using the active surface system we propose.


SPE Journal ◽  
2022 ◽  
pp. 1-13
Author(s):  
Song Qing ◽  
Hong Chen ◽  
Li-juan Han ◽  
Zhongbin Ye ◽  
Yihao Liao ◽  
...  

Summary α-Zirconium phosphate (α-ZrP) nanocrystals were synthesized by refluxing method and subsequently exfoliated into extremely thin 2D nanosheets by tetrabutylammonium hydroxide (TBAOH) solution. Dynamic light scattering, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the size distribution and morphology of α-ZrP nanosheets. Interfacial tension (IFT) and contact angle measurement were conducted by different concentrations of α-ZrP nanosheets solutions. The results displayed that the wettability of porous media surface was altered from oleophilic to hydrophilic and the IFT decreased with the increasing of α-ZrP nanosheets concentrations. A new method was proposed to calculate the Hamaker constant for 2D α-ZrP nanosheets. The calculated results displayed that α-ZrP nanosheets were not easy to agglomerate under experimental environment and when the interaction energy barrier increased, the transport amount of α-ZrP nanosheets also increased. Coreflooding tests were also performed with various concentrations and the oil recovery efficiency increased from 33.59 to 51.26% when α-ZrP nanosheets concentrations increased from 50 to 1,000 ppm.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 162
Author(s):  
Andrea Macchia ◽  
Sara Capriotti ◽  
Laura Rivaroli ◽  
Silvestro Antonio Ruffolo ◽  
Mauro Francesco La Russa

Urban art is a form of artistic visual expression and communication that is created in the street and generally in the public dimension of urban spaces. Often these kinds of artworks are in outdoor environments, and they usually suffer from atmospheric weathering and anthropic vandalism. Recently, several strategies have been used to limit or remove the effects of such vandalism. Currently, the use of quartz paints is growing among artists; such paints after setting are more porous and rough on the surface with respect to regular paints. The aim of the study is to assess the performance of anti-graffiti coatings on quartz artworks paints. Two anti-graffiti products were chosen, and their behaviors were assessed in the laboratory by means of contact angle measurement, water capillary test, colorimetric analysis, and optical and electron microscopy. Results showed good water repellence efficacy of the tested products, demonstrating that they are suitable for the protection of urban art, but at least two applications on the surface are needed to achieve good performance.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jianguo Lin ◽  
Wenhao Cai ◽  
Qing Peng ◽  
Fanbin Meng ◽  
Dechuang Zhang

In this work, a highly ordered TiO2 nanotube array on pure titanium (Ti) was prepared by anodization. The effects of the applied voltage and anodization time on the microstructure of the TiO2 nanotube arrays were investigated, and their hydrophilicity was evaluated by the water contact angle measurement. It was found that a highly ordered array of TiO2 nanotubes can be formed on the surface of pure Ti by anodized under the applied voltage of 20 V and the anodization time in the range of 6-12 h, and the nanotube diameter and length can be regulated by anodization time. The as-prepared TiO2 nanotubes were in an amorphous structure. After annealing at 550°C for 3 h, the amorphous TiO2 can be transformed to the anatase TiO2 through crystallization. The anatase TiO2 array exhibited a greatly improved hydrophilicity, depending on the order degree of the array and the diameter of the nanotubes. The sample anodized at 20 V for 12 h and then annealed at 550°C for 3 h exhibited a superhydrophilicity due to its highly ordered anatase TiO2 nanotube array with a tube diameter of 103.5 nm.


Sign in / Sign up

Export Citation Format

Share Document