scholarly journals Enhancing Global Maximum Power Point of Solar Photovoltaic Strings under Partial Shading Conditions Using Chimp Optimization Algorithm

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4086
Author(s):  
Timmidi Nagadurga ◽  
Pasumarthi Venkata Ramana Lakshmi Narasimham ◽  
V. S. Vakula ◽  
Ramesh Devarapalli ◽  
Fausto Pedro García Márquez

This paper proposes the application of a metaheuristic algorithm inspired by the social behavior of chimps in nature, called Chimp Optimization Algorithm (ChOA), for the maximum power point tracking of solar photovoltaic (PV) strings. In this algorithm, the chimps hunting process is mathematically articulated, and new mechanisms are designed to perform the exploration and exploitation. To evaluate the ChOA, it is applied to some fixed dimension benchmark functions and engineering problem application of tracking maximum power from solar PV systems under partial shading conditions. Partial shading condition is a common problem that appears in the solar PV modules installed in domestic areas. This shading alters the power developed by the solar PV panel, and exhibits multiple peaks on the power variation with voltage (P-V) characteristic curve. The dynamics of the solar PV system have been considered, and the mathematical model of a single objective function has been framed for tuning the optimal control parameter with the suggested algorithm. Implementing various practical shading patterns of solar PV systems with the ChOA algorithm has shown improved solar power point tracking performance compared to other algorithms in the literature.

2021 ◽  
Vol 9 ◽  
Author(s):  
Dongrui Li ◽  
Jinjin Li ◽  
Ning Wang

One of the most critical tasks during the application of photovoltaic (PV) systems is to harvest the optimal output power at various environmental scenarios, which is called maximum power point tracking (MPPT). Though plenty of advanced techniques are developed to achieve this purpose, most of them have corresponding prominent disadvantages, such as inefficient tracking ability, high computation burden, and complex convergence mechanism. Therefore, this work aims to propose a novel and powerful bio-inspired meta-heuristic optimization algorithm called peafowl optimization algorithm (POA), which is inspired by the group food searching behaviors of peafowl swarm. It can effectively achieve a suitable balance between local exploitation and global exploration thanks to its efficient exploratory and exploitative searching operators. Thus, a satisfactory MPPT performance for PV systems under partial shading condition (PSC) can be obtained based on POA. Moreover, two case studies, e.g., start-up test and step change in solar irradiation with constant temperature, are adopted to fairly and comprehensively validate the superiority and effectiveness of POA in contrast with particle swarm optimization (PSO) and teaching-learning-based optimization (TLBO), respectively.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


Author(s):  
Gunjan Varshney ◽  
D S Chauhan ◽  
M P Dave

<p>This paper deals with the evaluation of power quality issues in grid connected PV systems. This paper also presents  complete simulation, modeling and control of three phase grid connected solar PV module with Maximum Power Point Tracking. Perturb and Observe (P&amp;O) method has been used for Maximum Power Point Tracking. In the proposed model DC bus voltage control , harmonic mitigation and power factor control are discussed as power quality issues. The simulation results are shown in the graphical waveforms and simulation is performed in MATLAB using SIMULINK environment and PSB toolboxes. <strong> </strong></p>


2019 ◽  
Vol 16 (8) ◽  
pp. 3338-3345 ◽  
Author(s):  
Paresh S. Nasikkar ◽  
Chandrakant D. Bhos

Extracting the maximum power from as solar PV system is a critical task when high changes in light intensity or Partial Shading Condition (PSC) are experienced. The latter case is more difficult as it creates multiple maxima points on P–V curve. In this way, it is obligatory to thoroughly pick a precise Maximum Power Point Tracking (MPPT) method which recognizes adequately the Global Maximum Power Point (GMPP) and tracks it under partial shading. This paper first describes the modeling of PV module and PV characteristics under uniform irradiance as well as effect of PSC on PV characteristics. In the latter sections, a review of conventional and intelligent MPPT methods is done. To tackle the problem of MPPT under PSC, two metaheurisric algorithms namely Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are described briefly. A new optimization method called Cuckoo Search (CS) is implemented in MATLAB SIMULINK tool and tested under three different PSC patterns. A comparative analysis of different MPPT strategies is made after analyzing the results.


Sign in / Sign up

Export Citation Format

Share Document