Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC

Solar Energy ◽  
2019 ◽  
Vol 177 ◽  
pp. 306-316 ◽  
Author(s):  
Ali M. Eltamaly ◽  
Hassan M.H. Farh
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2521
Author(s):  
Alfredo Gil-Velasco ◽  
Carlos Aguilar-Castillo

There are multiples conditions that lead to partial shading conditions (PSC) in photovoltaic systems (PV). Under these conditions, the harvested energy decreases in the PV system. The maximum power point tracking (MPPT) controller aims to harvest the greatest amount of energy even under partial shading conditions. The simplest available MPPT algorithms fail on PSC, whereas the complex ones are effective but require high computational resources and experience in this type of systems. This paper presents a new MPPT algorithm that is simple but effective in tracking the global maximum power point even in PSC. The simulation and experimental results show excellent performance of the proposed algorithm. Additionally, a comparison with a previously proposed algorithm is presented. The comparison shows that the proposal in this paper is faster in tracking the maximum power point than complex algorithms.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 202 ◽  
Author(s):  
Jirada Gosumbonggot ◽  
Goro Fujita

Photovoltaic (PV) technology has been the focus of interest due to its nonpolluting operation and good installation flexibility. Irradiation and temperature are the two main factors which impact the performance of the PV system. Accordingly, when partial shading from surroundings occurs, its incident shadow diminishes the irradiation and reduces the generated power. Since the conventional maximum power point tracking methods (MPPT) could not distinguish the global maximum power of the power-voltage (P-V) characteristic curve, a new tracking method needs to be developed. This paper proposes a global maximum power point tracking method using shading detection and the trend of slopes from each section of the curve. Full mathematical equations and algorithms are presented. Simulations based on real weather data were performed both in short-term and long-term studies. Moreover, this paper also presents the experiment using the DC-DC synchronous and interleaved boost converter. Results from the simulation show an accurate tracking result and the system can enhance the total energy generated by 8.55% compared to the conventional scanning method. Moreover, the experiment also confirms the success of the proposed tracking algorithm.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1142
Author(s):  
Başoğlu

Photovoltaic (PV) modules experience some partial shading conditions (PSC) due to some various factors. In that kind of a condition, a few maximum power points (MPPs) possibly appear on the power-voltage (P-V) curve, which increases the tracking difficulties. It is known that maximum power point tracking (MPPT) may not be realized by hill climbing (HC) based conventional MPPT algorithms under PSCs. In this context, this paper presents a novel micro converter based algorithm that was developed by using P-V characteristics of PV modules. Unlike voltage or duty ratio scanning techniques, this paper introduces a new deciding method to determine the correct global MPP (GMPP) region. For this, the proposed method uses some duty ratios that were calculated corresponding to each MPP region. Thus, the initialization of duty ratio is done properly, which results in high tracking speed and accurate tracking of the GMPP. The other advantages of the proposed algorithm are structural simplicity, less computational burden, and ease of implementation with a basic microcontroller. The simulation results show that this algorithm has fast tracking capability and it manages to track GMPP for PSCs correctly, since it includes an artificial scanning procedure. Single ended primary inductance converter (SEPIC) is built in order to validate the proposed global maximum power point tracking (GMPPT) algorithm. The performance of the proposed GMPPT technique is verified by experimental studies. The results show that the proposed GMPPT technique is fast by up to five times than an adaptive full scanning strategy and improved IC algorithm. Furthermore, the proposed algorithm can be commercially used in micro converters, since it is compatible with small number of bypass diodes in a module.


2019 ◽  
Vol 16 (8) ◽  
pp. 3338-3345 ◽  
Author(s):  
Paresh S. Nasikkar ◽  
Chandrakant D. Bhos

Extracting the maximum power from as solar PV system is a critical task when high changes in light intensity or Partial Shading Condition (PSC) are experienced. The latter case is more difficult as it creates multiple maxima points on P–V curve. In this way, it is obligatory to thoroughly pick a precise Maximum Power Point Tracking (MPPT) method which recognizes adequately the Global Maximum Power Point (GMPP) and tracks it under partial shading. This paper first describes the modeling of PV module and PV characteristics under uniform irradiance as well as effect of PSC on PV characteristics. In the latter sections, a review of conventional and intelligent MPPT methods is done. To tackle the problem of MPPT under PSC, two metaheurisric algorithms namely Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are described briefly. A new optimization method called Cuckoo Search (CS) is implemented in MATLAB SIMULINK tool and tested under three different PSC patterns. A comparative analysis of different MPPT strategies is made after analyzing the results.


Sign in / Sign up

Export Citation Format

Share Document