scholarly journals Techno-Economic Planning and Operation of the Microgrid Considering Real-Time Pricing Demand Response Program

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4597
Author(s):  
Zi-Xuan Yu ◽  
Meng-Shi Li ◽  
Yi-Peng Xu ◽  
Sheraz Aslam ◽  
Yuan-Kang Li

The optimal planning of grid-connected microgrids (MGs) has been extensively studied in recent years. While most of the previous studies have used fixed or time-of-use (TOU) prices for the optimal sizing of MGs, this work introduces real-time pricing (RTP) for implementing a demand response (DR) program according to the national grid prices of Iran. In addition to the long-term planning of MG, the day-ahead operation of MG is also analyzed to get a better understanding of the DR program for daily electricity dispatch. For this purpose, four different days corresponding to the four seasons are selected for further analysis. In addition, various impacts of the proposed DR program on the MG planning results, including sizing and best configuration, net present cost (NPC) and cost of energy (COE), and emission generation by the utility grid, are investigated. The optimization results show that the implementation of the DR program has a positive impact on the technical, economic, and environmental aspects of MG. The NPC and COE are reduced by about USD 3700 and USD 0.0025/kWh, respectively. The component size is also reduced, resulting in a reduction in the initial cost. Carbon emissions are also reduced by 185 kg/year.

2021 ◽  
Author(s):  
Sajjad Saeedi ◽  
S. M. Hassan Hosseini Hosseini

Abstract In this paper, Stochastic synchronization of the Wind and Solar Energy Using Energy Storage system based on real-time pricing in the Day Ahead-Market Along with taking advantage of the potential of Demand Response programming, has been analyzed. Since renewables energies, loads and prices are uncertain, and planning is based on real-time pricing, the optimal biding proposition considers the wind power, solar system, and energy storage system. Uncertainty is addressed to solve the bidding strategy in a day-ahead market for optimal wind and PV power and optimal charging for energy storage. Batteries are the most promising device to compensate for the fluctuations of wind and photovoltaic power plants to mitigate their uncertainty. In general, using MILP is a suitable approach to address uncertainty as long as a linear formulation is acceptable for modeling either with continuous variables or integer ones. By setting some scenarios to formulate market prices, imbalance of energy, wind and solar system, the uncertainty problems could be easily solved by MILP solver. The model created enables the retailer to realize the potentials of the demand response program and exploit high technical and economic advantages. To ensure fair prices, a set of regulating constraints is considered for sales prices imposed by the regulation committees. A model is presented to optimize the electricity trading strategy in the electricity market, considering the uncertainty in the wholesale market price and the demand level. The retailer considered in this paper is a distribution company that is the owner and operator of the networks and operates under real-time pricing regulations. To model demand response, the elasticity coefficient is used. The proposed solution is implemented on a standard 144-bus sample network using a nonlinear integer programming method. The presented method results provide helpful and valuable information based on the optimal method proposed by the retailers considering the Demand response program and real-time pricing (RTP) system.


2018 ◽  
Vol 7 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Georgios Tsaousoglou ◽  
Nikolaos Efthymiopoulos ◽  
Prodrommos Makris ◽  
Emmanouel Varvarigos

Sign in / Sign up

Export Citation Format

Share Document