component size
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 92)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Sohil S. Desai ◽  
Ryan A. Nelson ◽  
Kayla C. Korbel ◽  
William N. Levine ◽  
Steven S. Goldberg

Abstract Background Anatomic total shoulder arthroplasty is typically performed through the deltopectoral approach followed by either a subscapularis tenotomy, tendon peel, or lesser tuberosity osteotomy to provide adequate exposure. These subscapularis-takedown methods have been associated with incomplete subscapularis healing, however, and as a result often lead to functional deficits and complications. Subscapularis-sparing approaches have been introduced to mitigate these complications, but thus far have either been limited to hemiarthroplasty or resulted in residual inferior humeral head osteophytes and humeral component size mismatch. The present technique demonstrates the possibility for surgeons to capitalize on the improved patient outcomes that are afforded by subscapularis-sparing approaches, while still utilizing the deltopectoral interval to perform a total glenohumeral joint arthroplasty. Methods This article describes in detail the placement of a stemless anatomic TSA with the use of angled glenoid instruments through a subscapularis-sparing deltopectoral approach. Postoperatively, patients are placed in a sling but are instructed to remove as tolerated, as early as the 1st postoperative week. Physical therapy is started at week 1 with a 4-phase progression. Conclusions This technique using a TSA system with a polyaxial glenoid reamer and angled pegs on the backside of the glenoid allows the potential for maintenance of the strong postoperative radiographic and patient-reported outcomes that are achieved using traditional TSA approaches, with the advantage of accelerated rehabilitation protocols and decreased risk of subscapularis insufficiency that result from the use of subscapularis-sparing approaches.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 431
Author(s):  
Nur Najihah Abu Bakar ◽  
Josep M. Guerrero ◽  
Juan C. Vasquez ◽  
Najmeh Bazmohammadi ◽  
Muzaidi Othman ◽  
...  

Microgrids are among the promising green transition technologies that will provide enormous benefits to the seaports to manage major concerns over energy crises, environmental challenges, and economic issues. However, creating a good design for the seaport microgrid is a challenging task, considering different objectives, constraints, and uncertainties involved. To ensure the optimal operation of the system, determining the right microgrid configuration and component size at minimum cost is a vital decision at the design stage. This paper aims to design a hybrid system for a seaport microgrid with optimally sized components. The selected case study is the Port of Aalborg, Denmark. The proposed grid-connected structure consists of renewable energy sources (photovoltaic system and wind turbines), an energy storage system, and cold ironing facilities. The seaport architecture is then optimized by utilizing HOMER to meet the maximum load demand by considering important parameters such as solar global horizontal irradiance, temperature, and wind resources. Finally, the best configuration is analyzed in terms of economic feasibility, energy reliability, and environmental impacts.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Shilun Zhang ◽  
Xunyi Zhao ◽  
Huijuan Wang

AbstractProgress has been made in how to suppress epidemic spreading on temporal networks via blocking all contacts of targeted nodes or node pairs. In this work, we develop contact blocking strategies that remove a fraction of contacts from a temporal (time evolving) human contact network to mitigate the spread of a Susceptible-Infected-Recovered epidemic. We define the probability that a contact c(i, j, t) is removed as a function of a given centrality metric of the corresponding link l(i, j) in the aggregated network and the time t of the contact. The aggregated network captures the number of contacts between each node pair. A set of 12 link centrality metrics have been proposed and each centrality metric leads to a unique contact removal strategy. These strategies together with a baseline strategy (random removal) are evaluated in empirical contact networks via the average prevalence, the peak prevalence and the time to reach the peak prevalence. We find that the epidemic spreading can be mitigated the best when contacts between node pairs that have fewer contacts and early contacts are more likely to be removed. A strategy tends to perform better when the average number contacts removed from each node pair varies less. The aggregated pruned network resulted from the best contact removal strategy tends to have a large largest eigenvalue, a large modularity and probably a small largest connected component size.


Author(s):  
Qianru Zhang ◽  
Meng Zhang ◽  
Chinthaka Gamanayake ◽  
Chau Yuen ◽  
Zehao Geng ◽  
...  

AbstractWith the improvement of electronic circuit production methods, such as reduction of component size and the increase of component density, the risk of defects is increasing in the production line. Many techniques have been incorporated to check for failed solder joints, such as X-ray imaging, optical imaging and thermal imaging, among which X-ray imaging can inspect external and internal defects. However, some advanced algorithms are not accurate enough to meet the requirements of quality control. A lot of manual inspection is required that increases the specialist workload. In addition, automatic X-ray inspection could produce incorrect region of interests that deteriorates the defect detection. The high-dimensionality of X-ray images and changes in image size also pose challenges to detection algorithms. Recently, the latest advances in deep learning provide inspiration for image-based tasks and are competitive with human level. In this work, deep learning is introduced in the inspection for quality control. Four joint defect detection models based on artificial intelligence are proposed and compared. The noisy ROI and the change of image dimension problems are addressed. The effectiveness of the proposed models is verified by experiments on real-world 3D X-ray dataset, which saves the specialist inspection workload greatly.


Author(s):  
Ruzimov Sanjarbek ◽  
Jamshid Mavlonov ◽  
Akmal Mukhitdinov

The paper aims to present an analysis of the component sizes of commercially available vehicles with electrified powertrains. The paper provides insight into how the powertrain components (an internal combustion engine, an electric motor and a battery) of mass production electrified vehicles are sized. The data of wide range of mass production electrified vehicles are collected and analyzed. Firstly, the main requirements to performance of a vehicle are described. The power values to meet the main performance requirements are calculated and compared to the real vehicle data. Based on the calculated values of the power requirements the minimum sizes of the powertrain components are derived. The paper highlights how the sizing methodologies, described in the research literature, are implemented in sizing the powertrain of the commercially available electrified vehicles.


Lung Cancer ◽  
2021 ◽  
Author(s):  
Shaoyuan Zhang ◽  
Dong Lin ◽  
Yangli Yu ◽  
Qiqi Cao ◽  
Guobing Liu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Henk Pander Maat ◽  
Ben Staal ◽  
Bregje Holleman

Describing sets in terms of a two-valued variable, either value can be chosen: exam results may be referred to by pass rates or fail rates. What determines such framing choices? Building on work by McKenzie and colleagues on reference points in the production and interpretation of framed information, we investigate two determinants of frame choice. One is that speakers tend to focus on the component that has increased vis-à-vis a previous state, the other is the tendency to choose the component larger than 50%. We propose to view reference points as pointing to different kinds of communicative relevance. Hence the use of the previous state and the 50% reference points by speakers is not just a function of the information, but is co-determined by a communicative cue in the context: the question being asked about this information. This line of thought is supported by two experiments containing items offering two-sided distribution information at two points in time. Our first experiment employs a static task, requiring a description of the most recent situation. The second experiment uses a dynamic task, asking participants to describe the development between the two time points. We hypothesize that in static tasks the component size is the strongest frame choice determinant, while in dynamic tasks frame choice is mainly driven by whether a component has increased. The experiments consist of 16 different scenarios, both with symmetrical contrasts (i.e., dogs vs. cats) and with asymmetrical ones (i.e., winning vs. losing). Both experiments support the hypotheses. In the static task, the size effect is the only consistent effect; in the dynamic task, the effect of direction of change is much larger than that of size. This pattern of differences between size and change effects applies across symmetrical and asymmetrical contrasts. Our experiments shed light on cognitive and communicative regularities involved in the production of framed messages: people do tend to prefer larger and increasing components when choosing a frame, but the relative strength of both these preferences depends on the communicative task.


Sign in / Sign up

Export Citation Format

Share Document