scholarly journals Evaluation of Soil Organic Layers Thickness and Soil Organic Carbon Stock in Hemiboreal Forests in Latvia

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 840
Author(s):  
Arta Bārdule ◽  
Aldis Butlers ◽  
Andis Lazdiņš ◽  
Ieva Līcīte ◽  
Uldis Zvirbulis ◽  
...  

In the forest land of many European countries, including hemiboreal Latvia, organic soils are considered to be large sources of greenhouse gas (GHG) emissions. At the same time, growing efforts are expected in the near future to decrease emissions from the Land Use, Land Use Change and Forestry sector, including lands with organic soils to achieve enhanced contributions to the emissions and removals balance target set by the Paris Agreement. This paper aims to describe the distribution of organic soil layer thickness in forest land based on national forest inventory data and to evaluate soil organic carbon stock in Latvian forests classified as land with organic soil. The average thickness of the forest floor (organic material consisting of undecomposed or partially decomposed litter, O horizon) was greatest in coniferous forests with wet mineral soil, and decreased with increasing soil fertility. However, forest stand characteristics, including basal area and age, were weak predictors of O horizon thickness. In forests with organic soil, a lower proportion of soil organic matter layer (H horizon) in the top 70 cm soil layer, but a higher soil organic carbon stock both in the 0–30 cm layer and in the 0–100 cm layer was found in drained organic soils than in wet organic soils. Furthermore, the distribution of the soil H horizon thickness across different forest site types highlighted the potential overestimation of area of drained organic soils in Latvian forest land reported within the National GHG Inventory.

Soil Science ◽  
2011 ◽  
Vol 176 (2) ◽  
pp. 110-114 ◽  
Author(s):  
Sriroop Chaudhuri ◽  
Eugenia M. Pena-Yewtukhiw ◽  
Louis M. McDonald ◽  
Jeffrey Skousen ◽  
Mark Sperow

2012 ◽  
Vol 9 (10) ◽  
pp. 15175-15211
Author(s):  
S. Liu ◽  
Y. Wei ◽  
W. M. Post ◽  
R. B. Cook ◽  
K. Schaefer ◽  
...  

Abstract. The Unified North American Soil Map (UNASM) was developed to provide more accurate regional soil information for terrestrial biosphere modeling. The UNASM combines information from state-of-the-art US STATSGO2 and Soil Landscape of Canada (SLCs) databases. The area not covered by these datasets is filled with the Harmonized World Soil Database version 1.1 (HWSD1.1). The UNASM contains maximum soil depth derived from the data source as well as seven soil attributes (including sand, silt, and clay content, gravel content, organic carbon content, pH, and bulk density) for the top soil layer (0–30 cm) and the sub soil layer (30–100 cm) respectively, of the spatial resolution of 0.25° in latitude and longitude. There are pronounced differences in the spatial distributions of soil properties and soil organic carbon between UNASM and HWSD, but the UNASM overall provides more detailed and higher-quality information particularly in Alaska and Central Canada. To provide more accurate and up-to-date estimate of soil organic carbon stock in North America, we incorporated Northern Circumpolar Soil Carbon Database (NCSCD) into the UNASM. The estimate of total soil organic carbon mass in the upper 100 cm soil profile based on the improved UNASM is 347.70 Pg, of which 24.7% is under trees, 14.2% is under shrubs, and 1.3% is under grasses and 3.8% under crops. This UNASM data will provide a resource for use in land surface and terrestrial biogeochemistry modeling both for input of soil characteristics and for benchmarking model output.


2021 ◽  
Vol 16 (3) ◽  
pp. 662-664
Author(s):  
Sabu Joseph ◽  
Rahul R ◽  
Sukanya S

The changes in the pattern of land use and land cover (LU/LC) have remarkable consequences on ecosystem functioning and natural resources dynamics. The present study analyzes the spatial pattern of LU/LC change detection along the Killiar River Basin (KRB), a major tributary of Karamana river in Thiruvananthapuram district, Kerala (India), over a period of 64 years (1957-2021) through Remote Sensing and GIS approach. The rationale of the study is to identify and classify LU/LC changes in KRB using the Survey of India (SOI) toposheet (1:50,000) of 1957, LISS-III imagery of 2005, Landsat 8 OLI & TIRS imagery of 2021 and further to scrutinize the impact of LU/LC conversion on Soil Organic Carbon stock in the study area. Five major LU/LC classes, viz., agriculture land, built-up, forest, wasteland and water bodies were characterized from available data. Within the study period, built-up area and wastelands showed a substantial increase of 51.51% and 15.67% respectively. Thus, the general trend followed is the increase in built-up and wastelands area which results in the decrease of all other LU/LC classes. Based on IPCC guidelines, total soil organic carbon (SOC) stock of different land-use types was estimated and was 1292.72 Mt C in 1957, 562.65 Mt C in 2005 and it reduced to 152.86 Mt C in 2021. This decrease is mainly due to various anthropogenic activities, mainly built-up activities. This conversion for built-up is at par with the rising population, and over-exploitation of natural and agricultural resources is increasing every year.


2014 ◽  
Vol 11 (2) ◽  
pp. 507-518 ◽  
Author(s):  
Samereh Falahatkar ◽  
Seyed Mohsen Hosseini ◽  
Abdolrassoul Salman Mahiny ◽  
Shamsollah Ayoubi ◽  
Shao-qiang Wang

Author(s):  
Bassey Udom ◽  
Joshua Ogunwole ◽  
Chima Wokocha

<p><span>Protection of soil organic carbon and acid-hydrolyzable carbohydrates in aggregate-size fractions is important for appraising soil degradation and aggregation under land use types. Aggregate-associated soil organic carbon (SOC) and acid-hydrolyzable carbohydrates (R-CHO) in bulk soils and aggregate-size fractions of a sandy loam soil under Alchornea bush, Rubber, Oil palm and Teak plantations in southern Nigeria were studied. Results revealed significant differences in aggregate-associated SOC and R-CHO, bulk densities, total porosity, soil organic carbon stock and aggregate stability among the land use types. Greater SOC was stored in macro-aggregates &gt;0.25 mm, while greater R-CHO was occluded in micro-aggregates &lt;0.25 mm (p&lt;0.05). The highest mean weight diameter (MWD) was 1.01 mm in Alchornea soils and 0.92 mm in Oil palm plantation at 0-15 cm topsoil. Soil organic carbon stock in 0-15 cm topsoil was 77.7, 81.8, 92.2, and 67.5 kg C ha<sup>-1</sup> in Alchornea, Rubber, Oil palm, and Teak soils, respectively. Relationships showed a positive linear correlations between MWD and SOC (r = 0.793, p &lt; 0.05) and R-CHO (r = 0.789. p &lt; 0.05). Alchornea bush and Oil palm plantation increased macro-aggregate formation and macro-pores &gt;5 µm, therefore they have greater potentials to boost protection of SOC in soil macro-aggregates.</span></p>


2019 ◽  
Vol 667 ◽  
pp. 833-845 ◽  
Author(s):  
Kabindra Adhikari ◽  
Phillip R. Owens ◽  
Zamir Libohova ◽  
David M. Miller ◽  
Skye A. Wills ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document