scholarly journals Firefighter Observations of “Surprising” Fire Behavior in Mountain Pine Beetle-Attacked Lodgepole Pine Forests

Fire ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 34 ◽  
Author(s):  
Kevin Moriarty ◽  
Antony S. Cheng ◽  
Chad M. Hoffman ◽  
Stuart P. Cottrell ◽  
Martin E. Alexander

The recent mountain pine beetle outbreak affecting lodgepole pine forests in the Rocky Mountains has created a novel fire environment for wildland firefighters. This paper presents results from an examination of firefighters’ observations of fire behavior in post-outbreak lodgepole pine forests, with a focus on what they considered surprising from a fire behavior standpoint and how this in turn affected their suppression tactics. The surprises in fire behavior experienced by firefighters during the red phase of post-outbreak forests included an elevated level of fire spread and intensity under moderate weather and fuel moisture conditions, increased spotting, and faster surface-to-crown fire transitions with limited or no ladder fuels. Unexpectedly, during the gray phase in mountain pine beetle-attacked stands, crown ignition and crown fire propagation was observed for short periods of time. Firefighters are now more likely to expect to see active fire behavior in nearly all fire weather and fuel moisture conditions, not just under critically dry and windy situations, and across all mountain pine beetle attack phases, not just the red phase. Firefighters changed their suppression tactics by adopting indirect methods due to the potential fire behavior and tree-fall hazards associated with mountain pine beetle-attacked lodgepole pine forests.

2013 ◽  
Vol 59 (4) ◽  
pp. 390-399 ◽  
Author(s):  
Chad M. Hoffman ◽  
Penelope Morgan ◽  
William Mell ◽  
Russell Parsons ◽  
Eva Strand ◽  
...  

2011 ◽  
Vol 81 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Martin Simard ◽  
William H. Romme ◽  
Jacob M. Griffin ◽  
Monica G. Turner

2011 ◽  
Vol 26 (3) ◽  
pp. 101-109 ◽  
Author(s):  
Jennifer G. Klutsch ◽  
Mike A. Battaglia ◽  
Daniel R. West ◽  
Sheryl L. Costello ◽  
José F. Negrón

Abstract A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected tree fall using measured and projected fuel and stand characteristics. Under 90th percentile weather conditions, uninfested plots exhibited proportionally more crown fire than infested plots. Plots predicted to have crown fire were composed mainly of nonhost conifer species and had a lower and more continuous canopy than infested plots. Where surface fire was predicted to occur, live lodgepole pine was the only conifer present, and plots had significantly lower tree mortality from fire than plots predicted to have crown fire. Mountain pine beetle-induced changes in stand and fuel characteristics resulted in increased intensity of surface fire behavior. Furthermore, with 80% infested tree fall, potential smoke production was predicted to be higher. Tree species composition of stands pre and postbark beetle outbreak is important when identifying mountain pine beetle-caused changes to potential fire behavior.


PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30002 ◽  
Author(s):  
Tania Schoennagel ◽  
Thomas T. Veblen ◽  
José F. Negron ◽  
Jeremy M. Smith

2015 ◽  
Vol 61 (4) ◽  
pp. 689-702 ◽  
Author(s):  
Jennifer S. Briggs ◽  
Todd J. Hawbaker ◽  
Don Vandendriesche

2017 ◽  
Vol 26 (10) ◽  
pp. 852 ◽  
Author(s):  
Kellen N. Nelson ◽  
Monica G. Turner ◽  
William H. Romme ◽  
Daniel B. Tinker

Early-seral forests are expanding throughout western North America as fire frequency and annual area burned increase, yet fire behaviour in young postfire forests is poorly understood. We simulated fire behaviour in 24-year-old lodgepole pine (Pinus contorta var. latifolia) stands in Yellowstone National Park, Wyoming, United States using operational models parameterised with empirical fuel characteristics, 50–99% fuel moisture conditions, and 1–60kmhr−1 open winds to address two questions: [1] How does fireline intensity, and crown fire initiation and spread vary among young, lodgepole pine stands? [2] What are the contributions of fuels, moisture and wind on fire behaviour? Sensitivity analysis indicated the greatest contributors to output variance were stand structure mediated wind attenuation, shrub fuel loads and 1000-h fuel moisture for fireline intensity; crown base height for crown fire initiation; and crown bulk density and 1-h fuel moisture for crown fire spread. Simulation results predicted crown fire (e.g. passive, conditional or active types) in over 90% of stands at 50th percentile moisture conditions and wind speeds greater than 3kmhr−1. We conclude that dense canopy characteristics heighten crown fire potential in young, postfire lodgepole pine forests even under less than extreme wind and fuel moisture conditions.


Ecoscience ◽  
2012 ◽  
Vol 19 (2) ◽  
pp. 113-126 ◽  
Author(s):  
Jeremy M. Smith ◽  
Sarah J. Hart ◽  
Teresa B. Chapman ◽  
Thomas T. Veblen ◽  
Tania Schoennagel

Sign in / Sign up

Export Citation Format

Share Document