Fire
Latest Publications


TOTAL DOCUMENTS

288
(FIVE YEARS 234)

H-INDEX

12
(FIVE YEARS 7)

Published By Mdpi Ag

2571-6255

Fire ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Marina Gravit ◽  
Daria Shabunina

The requirements for the fire resistance of steel structures of oil and gas facilities for transportation and production of hydrocarbons are considered (structures of tankers and offshore platforms). It is found that the requirements for the values of fire resistance of structures under hydrocarbon rather than standard fire conditions are given only for offshore stationary platforms. Experimental studies on the loss of integrity (E) and thermal insulating capacity (I) of steel bulkheads and deck with mineral wool under standard and hydrocarbon fire regimes are presented. Simulation of structure heating was performed, which showed a good correlation with the experimental results (convective heat transfer coefficients for bulkheads of class H: 50 W/m2·K; for bulkheads of class A: 25 W/m2·K). The consumption of mineral slabs and endothermic mat for the H-0 bulkhead is predicted. It is calculated that under a standard fire regime, mineral wool with a density of 80–100 kg/m2 and a thickness of 40 to 85 mm should be used; under a hydrocarbon fire regime, mineral wool with a density above 100 kg/m2 and a thickness of 60–150 mm is required. It is shown that to protect the structures of decks and bulkheads in a hydrocarbon fire regime, it is necessary to use 30–40% more thermal insulation and apply the highest density of fire-retardant material compared to the standard fire regime. Parameters of thermal conductivity and heat capacity of the applied flame retardant in the temperature range from 0 to 1000 °C were clarified.


Fire ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Kelsy Gibos ◽  
Kyle Fitzpatrick ◽  
Scott Elliott

Wildland firefighters continue to die in the line of duty. Flammable landscapes intersect with bold but good-intentioned doers and trigger entrapment—a situation where personnel is unexpectedly caught in fire behaviour-related, life-threatening positions where planned escape routes or safety zones are absent, inadequate, or compromised. We often document, share and discuss these stories, but many are missed, especially when the situation is a near miss. Entrapment continues to be a significant cause of wildland firefighter deaths. Why do we still not know how to prevent them? We review a selection of entrapment reports courtesy of the Wildland Fire Lessons Learned Centre (WFLLC) and focus on human factors involved in entrapment rather than the specifics of fire behaviour and the environment. We found that in order for operational supervisors to make more informed strategic and tactical decisions, a more holistic and complete trend analysis is necessary of the existing database of entrapment incidents. Analysis of the entrapment data would allow training to include a more fulsome understanding of when suppression resources are applying strategies and tactics that might expose them to a higher likelihood of entrapment. Operational supervisors would make more informed decisions as to where and when to deploy resources in critical situations in order to reduce the exposure to unnecessary risk of entrapment.


Fire ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Leonel J. R. Nunes ◽  
Catarina I. R. Meireles ◽  
Carlos J. Pinto Gomes ◽  
Nuno M. C. Almeida Ribeiro

Invasive species are an environmental problem affecting worldwide ecosystems. In the case of Acacia dealbata Link., the negative impacts affect the productivity of the forests due to the competition established with native species while contributing to a significant increment in the available fuel load, increasing the risk of fire. In Portugal, chemical and mechanical methods are mostly used in the control of these species. However, the costs are often unsustainable in the medium term, being abandoned before completing the tasks, allowing the recovery of the invasive species. The establishment of value chains for the biomass resulting from these actions was pointed out by several authors as a solution for the sustainability of the control process, as it contributes to reducing costs. However, the problems in quantifying the biomass availability make it challenging to organize and optimize these actions. This work, which started from a dendrometrical analysis carried out in stands of A. dealbata, created a model to assess woody biomass availability. The model proved to be statistically significant for stands with trees younger than 20 years old. However, the amount of data collected and the configuration of the settlements analyzed do not allow extrapolation of the model presented to older settlements.


Fire ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Amila Wickramasinghe ◽  
Nazmul Khan ◽  
Khalid Moinuddin

Firebrand spotting is a potential threat to people and infrastructure, which is difficult to predict and becomes more significant when the size of a fire and intensity increases. To conduct realistic physics-based modeling with firebrand transport, the firebrand generation data such as numbers, size, and shape of the firebrands are needed. Broadly, the firebrand generation depends on atmospheric conditions, wind velocity and vegetation species. However, there is no experimental study that has considered all these factors although they are available separately in some experimental studies. Moreover, the experimental studies have firebrand collection data, not generation data. In this study, we have conducted a series of physics-based simulations on a trial-and-error basis to reproduce the experimental collection data, which is called an inverse analysis. Once the generation data was determined from the simulation, we applied the interpolation technique to calibrate the effects of wind velocity, relative humidity, and vegetation species. First, we simulated Douglas-fir (Pseudotsuga menziesii) tree-burning and quantified firebrand generation against the tree burning experiment conducted at the National Institute of Standards and Technology (NIST). Then, we applied the same technique to a prescribed forest fire experiment conducted in the Pinelands National Reserve (PNR) of New Jersey, the USA. The simulations were conducted with the experimental data of fuel load, humidity, temperature, and wind velocity to ensure that the field conditions are replicated in the experiments. The firebrand generation rate was found to be 3.22 pcs/MW/s (pcs-number of firebrands pieces) from the single tree burning and 4.18 pcs/MW/s in the forest fire model. This finding was complemented with the effects of wind, vegetation type, and fuel moisture content to quantify the firebrand generation rate.


Fire ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Michael J. Campbell ◽  
Philip E. Dennison ◽  
Matthew P. Thompson ◽  
Bret W. Butler

Safety zones (SZs) are critical tools that can be used by wildland firefighters to avoid injury or fatality when engaging a fire. Effective SZs provide safe separation distance (SSD) from surrounding flames, ensuring that a fire’s heat cannot cause burn injury to firefighters within the SZ. Evaluating SSD on the ground can be challenging, and underestimating SSD can be fatal. We introduce a new online tool for mapping SSD based on vegetation height, terrain slope, wind speed, and burning condition: the Safe Separation Distance Evaluator (SSDE). It allows users to draw a potential SZ polygon and estimate SSD and the extent to which that SZ polygon may be suitable, given the local landscape, weather, and fire conditions. We begin by describing the algorithm that underlies SSDE. Given the importance of vegetation height for assessing SSD, we then describe an analysis that compares LANDFIRE Existing Vegetation Height and a recent Global Ecosystem Dynamics Investigation (GEDI) and Landsat 8 Operational Land Imager (OLI) satellite image-driven forest height dataset to vegetation heights derived from airborne lidar data in three areas of the Western US. This analysis revealed that both LANDFIRE and GEDI/Landsat tended to underestimate vegetation heights, which translates into an underestimation of SSD. To rectify this underestimation, we performed a bias-correction procedure that adjusted vegetation heights to more closely resemble those of the lidar data. SSDE is a tool that can provide valuable safety information to wildland fire personnel who are charged with the critical responsibility of protecting the public and landscapes from increasingly intense and frequent fires in a changing climate. However, as it is based on data that possess inherent uncertainty, it is essential that all SZ polygons evaluated using SSDE are validated on the ground prior to use.


Fire ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Oswaldo Maillard ◽  
Sebastian K. Herzog ◽  
Rodrigo W. Soria-Auza ◽  
Roberto Vides-Almonacid

Key Biodiversity Areas (KBAs) are sites that contribute significantly to the protection of the planet’s biodiversity. In this study, we evaluated the annual burned areas and the intensity of the fires that affected Bolivia and its 58 KBAs (23.3 million ha) over the last 20 years (2001–2020). In particular, we analyzed the impact of wildfires on the distribution of Bolivian birds at the levels of overall species richness, endemic species and threatened species (Critically Endangered, Endangered, Vulnerable). We found that at the KBA level, the cumulative area of wildfires was 21.6 million ha, while the absolute area impacted was 5.6 million ha. The KBAs most affected by the wildfires are located in the departments of Beni and Santa Cruz; mainly in the KBAs Área Natural de Manejo Integrado San Matías, Oeste del río Mamoré, Este del río Mamoré, Noel Kempff Mercado and Área Natural de Manejo Integrado Otuquis. The wildfires impacted the distribution of 54 threatened species and 15 endemic species in the KBAs. Based on the results of this study, it is a priority to communicate to Bolivian government authorities the importance of KBAs as a strategy for the conservation of the country’s biodiversity and the threats resulting from anthropogenic fires.


Fire ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 3
Author(s):  
Raad A. Al-Ameri ◽  
Sallal Rashid Abid ◽  
Mustafa Özakça

The repeated impact performance of engineered cementitious composites (ECCs) is not well explored yet, especially after exposure to severe conditions, such as accidental fires. An experimental study was conducted to evaluate the degradation of strength and repeated impact capacity of ECCs reinforced with Polypropylene fibers after high temperature exposure. Compressive strength and flexural strength were tested using cube and beam specimens, while disk specimens were used to conduct repeated impact tests according to the ACI 544-2R procedure. Reference specimens were tested at room temperature, while three other groups were tested after heating to 200, 400 and 600 °C and naturally cooled to room temperature. The test results indicated that the reference ECC specimens exhibited a much higher failure impact resistance compared to normal concrete specimens, which was associated with a ductile failure showing a central surface fracture zone and fine surface multi-cracking under repeated impacts. This behavior was also recorded for specimens subjected to 200 °C, while the exposure to 400 and 600 °C significantly deteriorated the impact resistance and ductility of ECCs. The recorded failure impact numbers decreased from 259 before heating to 257, 24 and 10 after exposure to 200, 400 and 600 °C, respectively. However, after exposure to all temperature levels, the failure impact records of ECCs kept at least four times higher than their corresponding normal concrete ones.


Fire ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 2
Author(s):  
Christine Eriksen

This Perspective highlights the lingering consequences of nuclear disasters by examining the risks posed by wildfires that rerelease radioactive fallout originally deposited into the environment by accidents at nuclear power plants or testing of nuclear weapons. Such wildfires produce uncontainable, airborne, and hazardous smoke, which potentially carries radioactive material, thus becoming the specter of the original disaster. As wildfires occur more frequently with climate change and land use changes, nuclear wildfires present a pressing yet little discussed problem among wildfire management and fire scholars. The problem requires urgent attention due to the risks it poses to the health and wellbeing of wildland firefighters, land stewards, and smoke-impacted communities. This Perspective explains the problem, outlines future research directions, suggests potential solutions, and underlines the broader benefits of mitigating the risks.


Fire ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Oleg M. Melnik ◽  
Stephen A. Paskaluk ◽  
Mark Y. Ackerman ◽  
Katharine O. Melnik ◽  
Dan K. Thompson ◽  
...  

Improving the accuracy of fire behavior prediction requires better understanding of live fuel, the dominant component of tree crowns, which dictates the consumption and energy release of the crown fire flame-front. Live fuel flammability is not well represented by existing evaluation methods. High-flammability live fuel, e.g., in conifers, may maintain or increase the energy release of the advancing crown fire flame-front, while low-flammability live fuel, e.g., in boreal deciduous stands, may reduce or eventually suppress flame-front energy release. To better characterize these fuel–flame-front interactions, we propose a method for quantifying flammability as the fuel’s net effect on (contribution to) the frontal flame energy release, in which the frontal flame is simulated using a methane diffusion flame. The fuel’s energy release contribution to the methane flame was measured using oxygen consumption calorimetry as the difference in energy release between the methane flame interacting with live fuel and the methane flame alone. In-flame testing resulted in fuel ignition and consumption comparable to those in wildfires. The energy release contribution of live fuel was significantly lower than its energy content measured using standard methods, suggesting better sensitivity of the proposed metric to water content- and oxygen deficiency-associated energy release reductions within the combustion zone.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 98
Author(s):  
Elmar Bourdon ◽  
Thomas Schaefer ◽  
Maximilian Kittel ◽  
Matthias Raedle ◽  
Alexandra Heininger

Physical distancing and wearing a face mask are key interventions to prevent COVID-19. While this remains difficult to practice for millions of firefighters in fire engines responding to emergencies, the delayed forthcoming of evidence on the effectiveness of such safety interventions in this setting presents a major problem. In this field experimental study, we provided initial evidence to close this gap. We examined total aerosol burden in the cabin of a fire engine whilst manipulating crew size, use of FFP2 respirators and use of SCBA full-face masks during 15-min driving periods. At the same time, we controlled for crew activity and speaking, vehicle speed, cabin ventilation, cabin air temperature, pressure and humidity. Limiting the crew size, using FFP2 respirators and not donning SCBA full-face masks was associated with a reduction of the arithmetic mean of total aerosol burden of up to 49%. This study provided initial evidence on the effectiveness of safety interventions in fire engines to reduce potential airborne transmission of SARS-CoV-2 through aerosols. More research about the physical and the clinical effectiveness of such safety interventions is needed.


Sign in / Sign up

Export Citation Format

Share Document