scholarly journals Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System

2021 ◽  
Vol 22 (18) ◽  
pp. 9806
Author(s):  
Martyna Bayassi-Jakowicka ◽  
Grazyna Lietzau ◽  
Ewelina Czuba ◽  
Aleksandra Steliga ◽  
Monika Waśkow ◽  
...  

A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant role not only in the physiological processes associated with reward and satisfaction but also in many diseases of the central nervous system. Summary of the current state of knowledge on the morphological and functional basis of such a diverse function of this structure may be a good starting point for further basic and clinical research. The NAc is a part of the brain reward system (BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter systems, and (4) a supportive role of neuroglia involved in both physiological and pathological processes. Understanding the complex function of NAc is possible by combining the results of morphological studies with molecular, genetic, and behavioral data. In this review, we present the current views on the NAc function in physiological conditions, emphasizing the role of its connections, neuroplasticity processes, and neurotransmitter systems.

2016 ◽  
Vol 26 ◽  
pp. S701-S702 ◽  
Author(s):  
V. Lorenzetti ◽  
N. Solowij ◽  
C. Suo ◽  
M. Walterfang ◽  
D. Lubman ◽  
...  

Author(s):  
Claudio A. Naranjo ◽  
Lescia K. Tremblay ◽  
Usoa E. Busto

Heliyon ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. e03947
Author(s):  
Madoka Anan ◽  
Ryoko Higa ◽  
Kenshiro Shikano ◽  
Masahito Shide ◽  
Akinobu Soda ◽  
...  

2012 ◽  
Vol 22 ◽  
pp. S128-S129
Author(s):  
A. Wallén-Mackenzie ◽  
E. Arvidsson ◽  
E. Restrepo ◽  
S. Pupe Johann ◽  
E. Perland ◽  
...  

2013 ◽  
Vol 16 (4) ◽  
pp. 763-769 ◽  
Author(s):  
Joar Guterstam ◽  
Nitya Jayaram-Lindström ◽  
Simon Cervenka ◽  
J. James Frost ◽  
Lars Farde ◽  
...  

Abstract Studies in rodents have shown that psychostimulant drugs such as cocaine and amphetamine cause endorphin release in the brain reward system. There is also evidence for the involvement of the opioid system in human psychostimulant dependence. The acute effects of an i.v. psychostimulant drug on the brain opioid system, however, have not yet been investigated in humans. We hypothesized that an i.v. dose of amphetamine as compared to placebo would cause an opioid release in the human brain reward system, measurable as a reduction of the binding potential of the µ-opioid receptor radioligand [11C]carfentanil. Ten healthy young men were examined using positron emission tomography (PET) and [11C]carfentanil in three sessions: at baseline; after placebo; after an i.v. amphetamine dose of 0.3 mg/kg bodyweight. The order of amphetamine and placebo was double-blinded and randomized. PET examinations were performed with a Siemens high resolution research tomograph. Data were analysed with the simplified reference tissue model, applying manually drawn regions of interest for every subject. Using repeated measures analysis of variance, we found no significant differences in [11C]carfentanil binding potential between amphetamine and placebo conditions in any of the investigated brain regions. In contrast to data from rodent studies and a recent study of oral amphetamine administration in humans, an i.v. dose of amphetamine does not cause any acute opioid release in healthy human subjects. The postulated role of the opioid system in mediating the effects of amphetamine needs to be further investigated in animal models of the disease as well as in patient populations.


2017 ◽  
Vol 27 ◽  
pp. S1070
Author(s):  
A. Just ◽  
C. Meng ◽  
D.G. Smith ◽  
E.T. Bullmore ◽  
T.W. Robbins ◽  
...  

2002 ◽  
Vol 17 ◽  
pp. 221
Author(s):  
A. Heinz ◽  
J. Wrase ◽  
S. Grüsser ◽  
D. Braus ◽  
P. Bartenstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document