scholarly journals Real-Time Tweet Analytics Using Hybrid Hashtags on Twitter Big Data Streams

Information ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 341
Author(s):  
Vibhuti Gupta ◽  
Rattikorn Hewett

Twitter is a microblogging platform that generates large volumes of data with high velocity. This daily generation of unbounded and continuous data leads to Big Data streams that often require real-time distributed and fully automated processing. Hashtags, hyperlinked words in tweets, are widely used for tweet topic classification, retrieval, and clustering. Hashtags are used widely for analyzing tweet sentiments where emotions can be classified without contexts. However, regardless of the wide usage of hashtags, general tweet topic classification using hashtags is challenging due to its evolving nature, lack of context, slang, abbreviations, and non-standardized expression by users. Most existing approaches, which utilize hashtags for tweet topic classification, focus on extracting hashtag concepts from external lexicon resources to derive semantics. However, due to the rapid evolution and non-standardized expression of hashtags, the majority of these lexicon resources either suffer from the lack of hashtag words in their knowledge bases or use multiple resources at once to derive semantics, which make them unscalable. Along with scalable and automated techniques for tweet topic classification using hashtags, there is also a requirement for real-time analytics approaches to handle huge and dynamic flows of textual streams generated by Twitter. To address these problems, this paper first presents a novel semi-automated technique that derives semantically relevant hashtags using a domain-specific knowledge base of topic concepts and combines them with the existing tweet-based-hashtags to produce Hybrid Hashtags. Further, to deal with the speed and volume of Big Data streams of tweets, we present an online approach that updates the preprocessing and learning model incrementally in a real-time streaming environment using the distributed framework, Apache Storm. Finally, to fully exploit the batch and stream environment performance advantages, we propose a comprehensive framework (Hybrid Hashtag-based Tweet topic classification (HHTC) framework) that combines batch and online mechanisms in the most effective way. Extensive experimental evaluations on a large volume of Twitter data show that the batch and online mechanisms, along with their combination in the proposed framework, are scalable, efficient, and provide effective tweet topic classification using hashtags.

2021 ◽  
Vol 11 (24) ◽  
pp. 11584
Author(s):  
Ilaria Bartolini ◽  
Marco Patella

The real-time analysis of Big Data streams is a terrific resource for transforming data into value. For this, Big Data technologies for smart processing of massive data streams are available, but the facilities they offer are often too raw to be effectively exploited by analysts. RAM3S (Real-time Analysis of Massive MultiMedia Streams) is a framework that acts as a middleware software layer between multimedia stream analysis techniques and Big Data streaming platforms, so as to facilitate the implementation of the former on top of the latter. RAM3S has been proven helpful in simplifying the deployment of non-parallel techniques to streaming platforms, such as Apache Storm or Apache Flink. In this paper, we show how RAM3S has been updated to incorporate novel stream processing platforms, such as Apache Samza, and to be able to communicate with different message brokers, such as Apache Kafka. Abstracting from the message broker also provides us with the ability to pipeline several RAM3S instances that can, therefore, perform different processing tasks. This represents a richer model for stream analysis with respect to the one already available in the original RAM3S version. The generality of this new RAM3S version is demonstrated through experiments conducted on three different multimedia applications, proving that RAM3S is a formidable asset for enabling efficient and effective Data Mining and Machine Learning on multimedia data streams.


Sign in / Sign up

Export Citation Format

Share Document