scholarly journals An Evaluation of the Large-Scale Implementation of Ocean Thermal Energy Conversion (OTEC) Using an Ocean General Circulation Model with Low-Complexity Atmospheric Feedback Effects

2018 ◽  
Vol 6 (1) ◽  
pp. 12 ◽  
Author(s):  
Yanli Jia ◽  
Gérard Nihous ◽  
Krishnakumar Rajagopalan
2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Krishnakumar Rajagopalan ◽  
Gérard C. Nihous

Global rates of ocean thermal energy conversion (OTEC) are assessed with a high-resolution (1 deg × 1 deg) ocean general circulation model (OGCM). In numerically intensive simulations, the OTEC process is represented by a pair of sinks and a source of specified strengths placed at selected water depths across the oceanic region favorable for OTEC. Results broadly confirm earlier estimates obtained with a coarse (4 deg × 4 deg) OGCM, but with the greater resolution and more elaborate description of key physical oceanic mechanisms in the present case, the massive deployment of OTEC systems appears to affect the global environment to a relatively greater extent. The maximum global OTEC power production drops to 14 TW, or about half of previously estimated levels, but it would be achieved with only one-third as many OTEC systems. Environmental effects at maximum OTEC power production are generally similar in both sets of simulations. The oceanic surface layer would cool down in tropical OTEC regions with a compensating warming trend elsewhere. Some heat would penetrate the ocean interior until the environment reaches a new steady state. A significant boost of the oceanic thermohaline circulation (THC) would occur. Although all simulations with given OTEC flow singularities were run for 1000 years to ensure stabilization of the system, convergence to a new equilibrium was generally achieved much faster, i.e., roughly within a century. With more limited OTEC scenarios, a global OTEC power production of the order of 7 TW could still be achieved without much effect on ocean temperatures.


2009 ◽  
Vol 39 (3) ◽  
pp. 753-767 ◽  
Author(s):  
Max Yaremchuk ◽  
Julian McCreary ◽  
Zuojun Yu ◽  
Ryo Furue

Abstract The salinity distribution in the South China Sea (SCS) has a pronounced subsurface maximum from 150–220 m throughout the year. This feature can only be maintained by the existence of a mean flow through the SCS, consisting of a net inflow of salty North Pacific tropical water through the Luzon Strait and outflow through the Mindoro, Karimata, and Taiwan Straits. Using an inverse modeling approach, the authors show that the magnitude and space–time variations of the SCS thermohaline structure, particularly for the salinity maximum, allow a quantitative estimate of the SCS throughflow and its distribution among the three outflow straits. Results from the inversion are compared with available observations and output from a 50-yr simulation of a highly resolved ocean general circulation model. The annual-mean Luzon Strait transport is found to be 2.4 ± 0.6 Sv (Sv ≡ 106 m3 s−1). This inflow is balanced by the outflows from the Karimata (0.3 ± 0.5 Sv), Mindoro (1.5 ± 0.4), and Taiwan (0.6 ± 0.5 Sv) Straits. Results of the inversion suggest that the Karimata transport tends to be overestimated in numerical models. The Mindoro Strait provides the only passage from the SCS deeper than 100 m, and half of the SCS throughflow (1.2 ± 0.3 Sv) exits the basin below 100 m in the Mindoro Strait, a result that is consistent with a climatological run of a 0.1° global ocean general circulation model.


2008 ◽  
Vol 274 (3-4) ◽  
pp. 448-461 ◽  
Author(s):  
Mark Siddall ◽  
Samar Khatiwala ◽  
Tina van de Flierdt ◽  
Kevin Jones ◽  
Steven L. Goldstein ◽  
...  

Oceanography ◽  
2012 ◽  
Vol 25 (2) ◽  
pp. 20-29 ◽  
Author(s):  
Brian Arbic ◽  
James Richman ◽  
Jay Shriver ◽  
Patrick Timko ◽  
Joseph Metzger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document