scholarly journals Investigations of New Phenothiazine-Based Compounds for Dye-Sensitized Solar Cells with Theoretical Insight

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2292 ◽  
Author(s):  
Aneta Slodek ◽  
Dawid Zych ◽  
Grażyna Szafraniec-Gorol ◽  
Paweł Gnida ◽  
Marharyta Vasylieva ◽  
...  

New D-π-D-π-A low-molecular-weight compounds, based on a phenothiazine scaffold linked via an acetylene unit with various donor moiety and cyanoacrylic acid anchoring groups, respectively, were successfully synthesized. The prepared phenothiazine dyes were entirely characterized using nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. The compounds were designed to study the relationship between end-capping donor groups’ structure on their optoelectronic and thermal properties as well as the dye-sensitized solar cells’ performance. The effect of π-conjugation enlargement by incorporation of different heterocyclic substituents possessing various electron–donor affinities was systematically experimentally and theoretically examined. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were implemented to determine the electronic properties of the novel molecules.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ahmad Irfan ◽  
Abdullah G. Al-Sehemi ◽  
Shabbir Muhammad

Geometries, electronic properties, and absorption spectra of the dyes which are a combination of thiophene based dye (THPD) and IR dyes (covering IR region; TIRBD1-TIRBD3) were performed using density functional theory (DFT) and time dependent density functional theory (TD-DFT), respectively. Different electron donating groups, electron withdrawing groups, and IR dyes have been substituted on THPD to enhance the efficiency. The bond lengths of new designed dyes are almost the same. The lowest unoccupied molecular orbital energies of designed dyes are above the conduction band of TiO2 and the highest occupied molecular orbital energies are below the redox couple revealing that TIRBD1-TIRBD3 would be better sensitizers for dye-sensitized solar cells. The broad spectra and low energy gap also showed that designed materials would be efficient sensitizers.


Sign in / Sign up

Export Citation Format

Share Document