organic dyes
Recently Published Documents





2022 ◽  
Vol 430 ◽  
pp. 132679
Eunji Kim ◽  
Jihun Kim ◽  
Taewoong Lee ◽  
Haisu Kang ◽  
Seunggun Yu ◽  

Yinghui Zhao ◽  
Qin Yang ◽  
Bin Yan ◽  
Baicang Liu ◽  
Yingchun Gu ◽  

2022 ◽  
Vol 23 (2) ◽  
pp. 965
Mina Han ◽  
Ikue Abe ◽  
Jihun Oh ◽  
Jaehoon Jung ◽  
Young Ji Son ◽  

Fluorescent molecular assembly systems provide an exciting platform for creating stimuli-responsive nano- and microstructured materials with optical, electronic, and sensing functions. To understand the relationship between (i) the plausible molecular structures preferentially adopted depending on the solvent polarity (such as N,N-dimethylformamide [DMF], tetrahydrofuran [THF], and toluene), (ii) the resulting spectroscopic features, and (iii) self-assembled nano-, micro-, and macrostructures, we chose a sterically crowded triangular azo dye (3Bu) composed of a polar molecular core and three peripheral biphenyl wings. The chromophore changed the solution color from yellow to pink-red depending on the solvent polarity. In a yellow DMF solution, a considerable amount of the twisted azo form could be kept stable with the help of favorable intermolecular interactions with the solvent molecules. By varying the concentration of the DMF solution, the morphology of self-assembled structures was transformed from nanoparticles to micrometer-sized one-dimensional (1D) structures such as sticks and fibers. In a pink-red toluene solution, the periphery of the central ring became more planar. The resulting significant amount of the keto-hydrazone tautomer grew into micro- and millimeter-sized 1D structures. Interestingly, when THF-H2O (1:1) mixtures were stored at a low temperature, elongated fibers were stacked sideways and eventually developed into anisotropic two-dimensional (2D) sheets. Notably, subsequent exposure of visible-light-irradiated sphere samples to solvent vapor resulted in reversible fluorescence off↔on switching accompanied by morphological restoration. These findings suggest that rational selection of organic dyes, solvents, and light is important for developing reusable fluorescent materials.

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 263
Szabolcs Bognár ◽  
Predrag Putnik ◽  
Daniela Šojić Merkulov

Polluting the natural water resources is a serious global issue, which is confirmed by the fact that today at least 2 billion people consume water from contaminated sources. The conventional wastewater treatment methods cannot effectively remove the persistent pollutants (e.g., drugs, organic dyes, pesticides) from the aqueous environment. Heterogeneous photocatalysis is a promising and sustainable alternative for water remediation. It is based on the interaction between light irradiation and the semiconductors (e.g., TiO2, ZnO) as photocatalysts, but these compounds, unfortunately, have some disadvantages. Hence, great attention has been paid to the nanotechnology as a possible way of improvement. Nanomaterials have extraordinary properties; however, their conventional synthesis is often difficult and requires a significant amount of dangerous chemicals. This concise topical review gives recent updates and trends in development of sustainable and green pathways in the synthesis of nanomaterials, as well as in their application for water remediation. In our review we put emphasis on the eco-friendly, mostly plant extract-based materials. The importance of this topic, including this study as well, is proved by the growing number of publications since 2018. Due to the current serious environmental issues (e.g., global warming, shortage of pure and quality water), it is necessary for the traditional TiO2 and ZnO semiconductors to be replaced with the harmless, non-toxic, and more powerful nanocomposites as photocatalysts. Not only because of their higher efficiency as compared to the bulk semiconductors, but also because of the presence of biomolecules that can add up to the pollutant removal efficiency, which has been already confirmed in many researches. However, despite the fact that the application of heterogeneous photocatalysis together with green nanotechnology is absolutely the future in water purification, there are some challenges which have to be overcome. The exact effects of the biomolecules obtained from plants in the synthesis of nanoparticles, as well as in the photocatalytic processes, are not exactly known and require further investigation. Furthermore, heterogeneous photocatalysis is a well-known and commonly examined process; however, its practical use outside the laboratory is expensive and difficult. Thus, it has to be simplified and improved in order to be available for everyone. The aim of our review is to suggest and prove that using these bio-inspired compounds it is possible to reduce human footprint in the nature.

2022 ◽  
pp. 52156
Jaroslav Stejskal ◽  
Michal Pekárek ◽  
Miroslava Trchová ◽  
Zdeňka Kolská

2022 ◽  
Vol 2022 ◽  
pp. 1-18
Avvaru Praveen Kumar ◽  
Dinesh Bilehal ◽  
Tegene Desalegn ◽  
Shalendra Kumar ◽  
Faheem Ahmed ◽  

Degradation of dye pollutants by the photocatalytic process has been regarded as the most efficient green method for removal organic dyes from contaminated water. The current research work describes the synthesis of Fe3O4@SiO2@Ru hybrid magnetic composites (HMCs) and their photocatalytic degradation of two azo dye pollutants, methyl orange (MO) and methyl red (MR), under irradiation of visible light. The synthesis of Fe3O4@SiO2@Ru HMCs involves three stages, including synthesis of Fe3O4 magnetic microspheres (MMSs), followed by silica (SiO2) coating to get Fe3O4@SiO2 MMSs, and then incorporation of presynthesized Ru nanoparticles (~3 nm) onto the surface of Fe3O4@SiO2 HMCs. The synthesized HMCs were characterized by XRD, FTIR, TEM, EDS, XPS, BET analysis, UV-DRS, PL spectroscopy, and VSM to study the physical and chemical properties. Furthermore, the narrow band gap energy of the HMC photocatalyst is a significant parameter that provides high photocatalytic properties due to the high light adsorption. The photocatalytic activity of synthesized Fe3O4@SiO2@Ru HMCs was assessed by researching their ability to degrade the aqueous solution of MO and MR dyes under visible radiation, and the influence of various functional parameters on photocatalytic degradation has also been studied. The results indicate that the photocatalytic degradation of MO and MR dyes is more than 90%, and acid media favors better degradation. The probable mechanism of photodegradation of azo dyes by Fe3O4@SiO2@Ru HMC catalysts has been proposed. Furthermore, due to the strong ferromagnetic Fe3O4 core, HMCs were easily separated from the solution after the photocatalytic degradation process for reuse. Also, the photocatalytic activity after six cycles of use is greater than 90%, suggesting the stability of the synthesized Fe3O4@SiO2@Ru HMCs.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 503
Hung-Vu Tran ◽  
Nhat M. Ngo ◽  
Riddhiman Medhi ◽  
Pannaree Srinoi ◽  
Tingting Liu ◽  

Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.

Ai Ling Pang ◽  
Agus Arsad ◽  
Mohsen Ahmadipour ◽  
Azrul Azlan Hamzah ◽  
Muhammad Abbas Ahmad Zaini ◽  

Sign in / Sign up

Export Citation Format

Share Document