scholarly journals Studies towards the Synthesis of Novel 3-Aminopropoxy-Substituted Dioxins Suitable for the Development of Aptamers for Photonic Biosensor Applications

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4727
Author(s):  
Stefania Kalantzi ◽  
Sofia Leonardi ◽  
Eleanna Vachlioti ◽  
Eleni G. Kaliatsi ◽  
Κοnstantina Papachristopoulou ◽  
...  

Hydroxy-substituted tetrachlorodibenzo[b,e][1,4]dioxin and tetrachlorodibenzo[b,d]furans have been synthesized using 3,4-dichloroanisole, 2,3,6-trichlorophenol and 4,5-dichlorocatechol as starting materials and electrophilic and/or nucleophilic aromatic substitution reactions for the assembly of the dibenzo[b,e][1,4]dioxin and dibenzo[b,d]furan systems. The thus-obtained phenolic compounds were then alkylated with N-1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde)-protected 3-bromopropan-1-amine to give the corresponding N-Dde protected 3-aminopropoxy-substituted tetrachlorodibenzo[b,e][1,4]dioxin and tetrachlorodibenzo[b,d]furans, respectively. Hydrazinolysis-mediated Dde removal from the former compound provided the corresponding amino-substituted dioxin, which was coupled to carboxy-substituted magnetic beads affording magnetic beads coated by the amino-substituted dioxin. The latter is an attractive intermediate for the development of selective single-standard DNA (ssDNA) aptamers, which constitute molecular recognition elements in photonic biosensors with potential application to the monitoring of the dangerous environmental pollutants, dioxins having serious implications in human health.

1996 ◽  
Vol 74 (3) ◽  
pp. 307-318 ◽  
Author(s):  
Clifford C. Leznoff ◽  
David M. Drew

Nucleophilic aromatic substitution reactions of 3-nitrophthalonitrile yield 3-hydroxyphthalonitrile and 3-neopentoxyphthalonitrile, the latter of which condensed to 1,8,15,22-tetraneopentoxyphthalocyanine as a mixture of isomers. Bisphthalonitriles such as 1,3-bis(2′,3′-dicyanophenoxy)-2,2-dipentylpropane, 1,3-bis(2′,3′-dicyanophenoxy)-2,2-diethylpropane, 1,3-bis(2′,3′-dicyanophenoxy)-2,2-dioctylpropane, and 1,3-bis(2′,3′-dicyanophenoxy)-2-methyl-2-trityloxymethylpropane all gave bis-crown-like 1,11,15,25-tetrasubstituted phthalocyanines as pure compounds when treated with lithium octoxide in 1-octanol at 196 °C. A host of nine other bisphthalonitriles including 1,5-bis(2′,3′-dicyanophenoxy)-3-oxapentane, 1,1-bis(2′,3′-dicyanophenoxymethyl)cyclohexane, 1,2-bis(2′,3′-dicyanophenoxymethyl)benzene, and 2,5-bis(2′,3′-dicyanophenoxymethyl)furan did not dimerize to mononuclear phthalocynaines. The "gem dimethyl" effect was suggested as a reason for the successful macrocyclizations. Key words: nucleophilic aromatic substitution, phthalonitriles, bisphthalonitriles, 1,11,15,25-tetrasubstituted phthalocyanines.


2019 ◽  
Vol 15 ◽  
pp. 474-489 ◽  
Author(s):  
Andrejs Šišuļins ◽  
Jonas Bucevičius ◽  
Yu-Ting Tseng ◽  
Irina Novosjolova ◽  
Kaspars Traskovskis ◽  
...  

The synthesis of novel fluorescent N(9)-alkylated 2-amino-6-triazolylpurine and 7-deazapurine derivatives is described. A new C(2)-regioselectivity in the nucleophilic aromatic substitution reactions of 9-alkylated-2,6-diazidopurines and 7-deazapurines with secondary amines has been disclosed. The obtained intermediates, 9-alkylated-2-amino-6-azido-(7-deaza)purines, were transformed into the title compounds by CuAAC reaction. The designed compounds belong to the push–pull systems and possess promising fluorescence properties with quantum yields in the range from 28% to 60% in acetonitrile solution. Due to electron-withdrawing properties of purine and 7-deazapurine heterocycles, which were additionally extended by triazole moieties, the compounds with electron-donating groups showed intramolecular charge transfer character (ICT/TICT) of the excited states which was proved by solvatochromic dynamics and supported by DFT calculations. In the 7-deazapurine series this led to increased fluorescence quantum yield (74%) in THF solution. The compounds exhibit low cytotoxicity and as such are useful for the cell labelling studies in the future.


2015 ◽  
Vol 17 (19) ◽  
pp. 4734-4737 ◽  
Author(s):  
Nicholas A. Isley ◽  
Roscoe T. H. Linstadt ◽  
Sean M. Kelly ◽  
Fabrice Gallou ◽  
Bruce H. Lipshutz

Sign in / Sign up

Export Citation Format

Share Document