magnetic beads
Recently Published Documents


TOTAL DOCUMENTS

1590
(FIVE YEARS 464)

H-INDEX

71
(FIVE YEARS 10)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 364
Author(s):  
Tatsuya Onishi ◽  
Kisyo Mihara ◽  
Sachiko Matsuda ◽  
Satoshi Sakamoto ◽  
Akihiro Kuwahata ◽  
...  

Screening, monitoring, and diagnosis are critical in oncology treatment. However, there are limitations with the current clinical methods, notably the time, cost, and special facilities required for radioisotope-based methods. An alternative approach, which uses magnetic beads, offers faster analyses with safer materials over a wide range of oncological applications. Magnetic beads have been used to detect extracellular vesicles (EVs) in the serum of pancreatic cancer patients with statistically different EV levels in preoperative, postoperative, and negative control samples. By incorporating fluorescence, magnetic beads have been used to quantitatively measure prostate-specific antigen (PSA), a prostate cancer biomarker, which is sensitive enough even at levels found in healthy patients. Immunostaining has also been incorporated with magnetic beads and compared with conventional immunohistochemical methods to detect lesions; the results suggest that immunostained magnetic beads could be used for pathological diagnosis during surgery. Furthermore, magnetic nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs), can detect sentinel lymph nodes in breast cancer in a clinical setting, as well as those in gallbladder cancer in animal models, in a surgery-applicable timeframe. Ultimately, recent research into the applications of magnetic beads in oncology suggests that the screening, monitoring, and diagnosis of cancers could be improved and made more accessible through the adoption of this technology.


2022 ◽  
Author(s):  
Skyler L. Kelly ◽  
Courtney E. Szyjka ◽  
Eric J. Strobel

Synchronized transcription elongation complexes (TECs) are a fundamental tool for in vitro studies of transcription and RNA folding. Transcription elongation can be synchronized by omitting one or more NTPs from an in vitro transcription reaction so that RNA polymerase can only transcribe to the first occurrence of the omitted nucleotide(s) in the coding DNA strand. This approach was developed over four decades ago and has been applied extensively in biochemical investigations of RNA polymerase enzymes, but has not been optimized for RNA-centric assays. In this work, we describe the development of a system for isolating synchronized TECs from an in vitro transcription reaction. Our approach uses a custom 5′ leader sequence, called C3-SC1, to reversibly capture synchronized TECs on magnetic beads. We first show that complexes isolated by this procedure, called C3-SC1TECs, are >95% pure, >98% active, highly synchronous (94% of complexes chase in <15s upon addition of saturating NTPs), and compatible with solid-phase transcription; the yield of this purification is ~8%. We then show that C3-SC1TECs perturb, but do not interfere with, the function of ZTP-sensing and ppGpp-sensing transcriptional riboswitches. For both riboswitches, transcription using C3-SC1TECs improved the efficiency of transcription termination in the absence of ligand but did not inhibit ligand-induced transcription antitermination. Given these properties, C3-SC1TECs will likely be useful for developing biochemical and biophysical RNA assays that require high-performance, quantitative bacterial in vitro transcription.


2021 ◽  
Vol 5 (2) ◽  
pp. 24
Author(s):  
Dino Pećar ◽  
Ivana Čeko ◽  
Lana Salihefendić ◽  
Rijad Konjhodžić

Monitoring of the lineages SARS-CoV-2 is equally important in a fight against COVID-19 epidemics, as is regular RT - PCR testing. Ion AmpliSeq Library kit plus is a robust and validated protocol for library preparation, but certain optimizations for better sequencing results were required. Clinical SARS-CoV-2 samples were transported in three different viral transport mediums (VTM), on arrival at the testing lab, samples were stored on -20OC. Viral RNA isolation was done on an automatic extractor using a magnetic beads-based protocol. Screening for positive SARS-CoV-2 samples was performed on RT–PCR with IVD certified detection kit. This study aims to present results as follows: impact of first PCR cycle variation on library quantity, comparison of VTMs with a quantified library, maximum storage time of virus and correlation between used cDNA synthesis kit with generated target base coverage. Our results confirmed the adequacy of the three tested VTMs for SARS-CoV-2 whole-genome sequencing. Tested cDNA synthesis kits are valid for NGS library preparation and all kits give good quality cDNA uniformed in viral sequence coverage. Results of this report are useful for applicative scientists who work on SARS-CoV-2 whole-genome sequencing to compare and apply good laboratory practice for optimal preparation of the NGS library.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6386
Author(s):  
Antonio J. Ruiz-Rodríguez ◽  
Maria P. Molina-Vallejo ◽  
Inés Aznar-Peralta ◽  
Cristina González Puga ◽  
Inés Cañas García ◽  
...  

The isolation of circulating tumour cells (CTCs) in colorectal cancer (CRC) mostly relies on the expression of epithelial markers such as EpCAM, and phenotypic characterisation is usually performed under fluorescence microscopy with only one or two additional markers. This limits the ability to detect different CTC subpopulations based on multiple markers. The aim of this work was to develop a novel protocol combining two platforms (IsoFluxTM and ImageStream®X) to improve CTC evaluation. Cancer cell lines and peripheral blood from healthy donors were used to evaluate the efficiency of each platform independently and in combination. Peripheral blood was extracted from 16 early CRC patients (before loco-regional surgery) to demonstrate the suitability of the protocol for CTC assessment. Additionally, peripheral blood was extracted from nine patients one month after surgery to validate the utility of our protocol for identifying CTC subpopulation changes over time. Results: Our protocol had a mean recovery efficiency of 69.5% and a limit of detection of at least four cells per millilitre. We developed an analysis method to reduce noise from magnetic beads used for CTC isolation. CTCs were isolated from CRC patients with a median of 37 CTCs (IQ 13.0–85.5) at baseline. CTCs from CRC patients were significantly (p < 0.0001) larger than cytokeratin (CK)-negative cells, and patients were stratified into two groups based on BRAFV600E and PD-L1 expression on CK-positive cells. The changes observed over time included not only the number of CTCs but also their distribution into four different subpopulations defined according to BRAFV600E and PD-L1 positivity. We developed a novel protocol for semi-automatic CTC isolation and phenotypic characterisation by combining two platforms. Assessment of CTCs from early CRC patients using our protocol allowed the identification of two clusters of patients with changing phenotypes over time.


2021 ◽  
Vol 22 (24) ◽  
pp. 13621
Author(s):  
Min Woo Kim ◽  
Hani Koh ◽  
Jee Ye Kim ◽  
Suji Lee ◽  
Hyojung Lee ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most aggressive malignancies and has high mortality and poor survival rates. Therefore, there is an urgent need to discover non-invasive biomarkers for early detection before PDAC reaches the incurable stage. We hypothesized that liquid biopsy of PDAC-derived extracellular vesicles (PDEs) containing abundant microRNAs (miRNAs) could be used for early diagnosis of PDAC because they can be selectively enriched and because they are biologically stable. We isolated PDEs by immunocapture using magnetic beads, and we identified 13 miRNA candidates in 20 pancreatic cancer patients and 20 normal controls. We found that expression of five miRNAs, including miR−10b, miR−16, miR−155, miR−429, and miR−1290, was markedly higher in PDEs. Furthermore, the miRNA signatures along with serum carbohydrate antigen 19−9 (CA19−9) were optimized by logistic regression, and the miRNA signature and CA19−9 combination markers (CMs) were effective at differentiating PDAC patients from normal controls. As a result, the CMs represented a high sensitivity (AUC, 0.964; sensitivity, 100%; specificity, 80%) and a high specificity (AUC, 0.962; sensitivity, 85.71%; specificity, 100%). These findings suggest that five miRNAs expressed in PDEs and CA19−9 are valuable biomarkers for screening and diagnosis of pancreatic cancer by liquid biopsy.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 907
Author(s):  
Yi Huang ◽  
Xiaoqian Tang ◽  
Lu Zheng ◽  
Junbin Huang ◽  
Qi Zhang ◽  
...  

Ustiloxins are a group of mycotoxins produced by rice false smut pathogen. Previous studies have shown that the false smut balls contain six types of ustiloxins, and these toxins are toxic to living organisms. Thus, immunoassay for on-site monitoring of ustiloxins in rice is urgently required. The current immunoassays are only for detecting single ustiloxin, and they cannot meet the demand for synchronous and rapid detection of the group toxins. Therefore, this study designed and synthesized a generic antigen with ustiloxin G as material based on the common structure of the mycotoxins. Ustiloxin G was conjugated to two carrier proteins including bovine serum albumin (BSA) and ovalbvmin (OVA) by carbon diimide method. The mice were immunized with ustiloxin-G-BSA to generate the antibody serum, which was further purified to obtain the generic antibody against ustiloxins. The conjugated ustiloxin G-OVA and generic antibodies were used for establishing the enzyme-linked immunosorbent assay (ELISA) for ustiloxin detection and optimizing experiment conditions. The characterization of the antibody showed that the semi-inhibitory concentrations (IC50) of ustiloxin A, B, and G were 0.53, 0.34, and 0.06 µg/mL, respectively, and that their corresponding cross-reactivities were 11.9%, 18.4%, and 100%, respectively. To increase ELISA detection efficiency, generic antibody was combined with magnetic beads to obtain sensitive and class-specific immune-magnetic beads. Based on these immuno-magnetic beads, a high-efficiency enzyme-linked immunoassay method was developed for ustiloxin detection, whose sensitivity to ustiloxin A, B, and G was improved to 0.15 µg/mL, 0.14 µg/mL, and 0.04 µg/mL, respectively. The method accuracy was evaluated by spiking ustiloxin G as standard, and the spiked samples were tested by the immune-magnetic bead-based ELISA. The result showed the ustiloxin G recoveries ranged from 101.9% to 116.4% and were accepted by a standard HPLC method, indicating that our developed method would be promising for on-site monitoring of ustiloxins in rice.


2021 ◽  
Author(s):  
Chamteut Oh ◽  
Kyukyoung Kim ◽  
Elbashir Araud ◽  
Leyi Wang ◽  
Joanna L. Shisler ◽  
...  

AbstractViruses are present at low concentrations in wastewater, and therefore an effective concentration of virus particles is necessary for accurate wastewater-based epidemiology (WBE). We designed a novel approach to concentrate human and animal viruses from wastewater using porcine gastric mucin-conjugated magnetic beads (PGM-MBs). We systematically evaluated the performances of the PGM-MBs method (sensitivity, specificity, and robustness to environmental inhibitors) with six viral species including Tulane virus (a surrogate for human norovirus), rotavirus, adenovirus, porcine coronavirus (transmissible gastroenteritis virus or TGEV), and two human coronaviruses (NL63 and SARS-CoV-2) in influent wastewater and raw sewage samples. We determined the multiplication factor (the ratio of genome concentration of the concentrated over that of the initial solution) for the PGM-MBs method, which ranged from 1.3 to 64.0 depending on the viral species. Because the recovery efficiency became significantly higher when calculated based on virus titers than genome concentration, the PGM-MBs method could be an appropriate tool for assessing the risk due to wastewater contaminated with infectious enteric viruses. PCR inhibitors were not concentrated by PGM-MBs, suggesting this tool will be successful for use with environmental samples. The PGM-MBs method is cost-effective (0.43 USD/sample) and fast turnaround (3 hours from virus concentration to genome quantification), and thus this method can be implemented for high throughput facilities. Based on good performance, intrinsic characteristics of targeting the infectious virus, robustness to wastewater, and adaptability to high throughput systems, we are confident that the PGM-MBs method can be applied for successful WBE and ultimately provides valuable public health information.Graphical abstract


Author(s):  
Aaron Topol ◽  
marlene.wolfe not provided ◽  
Krista Wigginton ◽  
Bradley White ◽  
Alexandria B Boehm

Please note that while this protocol is for TNA extraction using the Perkin Elmer Chemagic 360, RNA extraction with resuspended solids from this protocol has been verified to perform well using the Kingfisher MagMax kit as another high throughput, automated option and two manual Qiagen kits - the All Prep Powerviral DNA/RNA Kit and the Qiamp Viral RNA Mini Kit. This process instruction describes the steps for purification of nucleic acids from wastewater solids and preparation for downstream quantitative analysis with Reverse Transcriptase droplet digital Polymerase Chain Reaction (RT-ddPCR). Due to the large quantities of substances that have inhibitory effects on PCR in wastewater samples, a subsequent PCR inhibitor removal step is required after nucleic acid purification. Both steps of the process are carried out in a 96-well plate format. This method uses the resuspended solids generated using this protocol: High Throughput pre-analytical processing of wastewater settled solids for SARS-CoV-2 RNA analyses. RNA purification is carried out using a kit optimized for the purification of viral on for the Perkin Elmer Chemagic 360. Although only RNA is used in the downstream applications from this protocol, DNA is also eluted in this process. A crucial component of the purification kit are the magnetic particles coated with poly vinyl alcohol (M-PVA Magnetic Beads) which have a hydrophilic surface giving them an affinity for nucleic acids but not many other biological molecules. The workflow involves binding nucleic acids in a sample to the beads which are then transferred through a series of wash buffers to remove debris with a robotic head with magnetic rods. The OneStep PCR Inhibitor Removal Kits are PCR inhibitor clean up kits that contain all the components needed for efficient removal of contaminants that can inhibit downstream enzymatic reactions (e.g. PCR and RT) from DNA and RNA preparations. The column matrices in these PCR inhibitor clean up kits have been specifically designed for the efficient removal of polyphenolic compounds, humic/fulvic acids, tannins, melanin, etc. from the most impure DNA and RNA preparations. This process instruction applies to extraction of RNA from wastewater samples using the Chemagic™ Viral DNA/RNA 300 Kit H96 for the Perkin Elmer Chemagic 360 followed by PCR Inhibitor Removal with the Zymo OneStep-96 PCR Inhibitor Removal Kit.


Sign in / Sign up

Export Citation Format

Share Document