low cytotoxicity
Recently Published Documents





2022 ◽  
Vol 9 ◽  
Ponnusamy Packialakshmi ◽  
Perumal Gobinath ◽  
Daoud Ali ◽  
Saud Alarifi ◽  
Raman Gurusamy ◽  

In this work, we synthesize the sulfonated Schiff bases of the chitosan derivatives 2a-2j without the use of a catalyst in two moderately straightforward steps with good yield within a short reaction time. The morphology and chemical structure of chitosan derivatives were investigated using FT-IR, NMR (1H—13C), XRD, and SEM. Furthermore, our chitosan derivatives were tested for their anticancer activity against the MCF-7 cancer cell line, and doxorubicin was used as a standard. In addition, the normal cell lines of the breast cancer cell MCF-10A, and of the lung cell MRC-5 were tested. Compound 2 h, with a GI50 value of 0.02 µM for MCF-7, is highly active compared with the standard doxorubicin and other compounds. The synthesized compounds 2a-2j exhibit low cytotoxicity, with IC50 > 100 μg/ml, against normal cell lines MCF-10A, MRC-5. We also provide the results of an in-silico study involving the Methoxsalen protein (1Z11). Compound 2h exhibits a higher binding affinity for 1Z11 protein (−5.9 kcal/mol) and a lower binding affinity for Doxorubicin (−5.3 kcal/mol) than certain other compounds. As a result of the aforementioned findings, the use of compound 2h has an anticancer drug will be researched in the future.

2022 ◽  
Vol 17 (1) ◽  
Bei Wang ◽  
Xianfeng Wang ◽  
Zhiwei Xiong ◽  
Guanzheng Lu ◽  
Weikun Ma ◽  

AbstractTraditional Chinese medicine polysaccharides (TCMPs) are plentiful and renewable resources with properties such as biocompatibility, hydrophilicity, biodegradability, and low cytotoxicity. Because the polysaccharide molecular chain contains a variety of active groups, different polysaccharide derivatives can be easily produced through chemical modification. They have been increasingly used in drug delivery systems (DDS). However, the potential of polysaccharides is usually ignored due to their structural complexity, poor stability or ambiguity of mechanisms of actions. This review summarized the applications of TCMPs in DDS around four main aspects. The general characteristics of TCMPs as drug delivery carriers, as well as the relationships between structure and function of them were summarized. Meanwhile, the direction of preparing multifunctional drug delivery materials with synergistic effect by using TCMPs was discussed. This review aims to become a reference for further research of TCMPs and their derivatives, especially applications of them as carriers in pharmaceutical preparation industry.

Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 41
Le Minh Tu Phan ◽  
Thi Xoan Hoang ◽  
Sungbo Cho

Although iron is an essential constituent for almost all living organisms, iron dyshomeostasis at a cellular level may trigger oxidative stress and neuronal damage. Hence, there are numerous reported carbon dots (CDs) that have been synthesized and applied to determine intracellular iron ions. However, among reported CDs focused to detect Fe3+ ions, only a few CDs have been designed to specifically determine Fe2+ ions over Fe3+ ions for monitoring of intracellular Fe2+ ions. We have developed the nitrogen-doped CDs (NCDs) for fluorescence turn-off detection of Fe2+ at cellular level. The as-synthesized NCDs exhibit a strong blue fluorescence and low cytotoxicity, acting as fluorescence probes to detect Fe2+ as low as 0.702 µM in aqueous solution within 2 min and visualize intracellular Fe2+ in the concentration range from 0 to 500 µM within 20 min. The as-prepared NCDs possess some advantages such as high biocompatibility, strong fluorescence properties, selectivity, and rapidity for intracellular Fe2+ monitoring, making NCDs an excellent nanoprobe for biosensing of intracellular ferrous ions.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 487
Jolanta Polak ◽  
Marcin Grąz ◽  
Kamila Wlizło ◽  
Katarzyna Szałapata ◽  
Justyna Kapral-Piotrowska ◽  

Fungal laccase obtained from a Cerrena unicolor strain was used as an effective biocatalyst for the transformation of 8-anilino-1-naphthalenesulfonic acid into a green-coloured antibacterial compound, which can be considered as both an antimicrobial agent and a textile dye, simultaneously. The process of biosynthesis was performed in buffered solutions containing methanol as a co-solvent, allowing better solubilisation of substrate. The transformation process was optimised in terms of the buffer pH value, laccase activity, and concentrations of the substrate and co-solvent. The crude product obtained exhibited low cytotoxicity, antibacterial properties against Staphylococcus aureus and Staphylococcus epidermidis, and antioxidant properties. Moreover, the synthesised green-coloured compound proved non-allergenic and demonstrated a high efficiency of dyeing wool fibres.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 420
Grażyna Kubiak-Tomaszewska ◽  
Piotr Roszkowski ◽  
Emilia Grosicka-Maciąg ◽  
Paulina Strzyga-Łach ◽  
Marta Struga

Flavonoids and polyunsaturated fatty acids due to low cytotoxicity in vitro studies are suggested as potential substances in the prevention of diseases associated with oxidative stress. We examined novel 6-hydroxy-flavanone and 7-hydroxy-flavone conjugates with selected fatty acids (FA) of different length and saturation and examined their cytotoxic and antioxidant potential. Our findings indicate that the conjugation with FA affects the biological activity of both the original flavonoids. The conjugation of 6-hydroxy-flavanone increased its cytotoxicity towards prostate cancer PC3 cells. The most noticeable effect was found for oleate conjugate. A similar trend was observed for 7-hydroxy-flavone conjugates with the most evident effect for oleate and stearate. The cytotoxic potential of all tested conjugates was not specific towards PC3 because the viability of human keratinocytes HaCaT cells decreased after exposure to all conjugates. Additionally, we showed that esterification of the two flavonoids decreased their antioxidant activity compared to that of the original compounds. Of all the tested compounds, only 6-sorbic flavanone showed a slight increase in antioxidant potential compared to that of the original compound. Our data show that conjugated flavonoids are better absorbed and enhance cytotoxic effects, but the presence of FA lowered the antioxidant potential.

2022 ◽  
Vol 26 (1) ◽  
Paula Zwicker ◽  
Thomas Schmidt ◽  
Melanie Hornschuh ◽  
Holger Lode ◽  
Axel Kramer ◽  

Abstract Aim Periprosthetic joint infections are a devastating complication after arthroplasty, leading to rejection of the prosthesis. The prevention of septic loosening may be possible by an antimicrobial coating of the implant surface. Poly (hexamethylene) biguanide hydrochloride [PHMB] seems to be a suitable antiseptic agent for this purpose since previous studies revealed a low cytotoxicity and a long-lasting microbicidal effect of Ti6Al4V alloy coated with PHMB. To preclude an excessive activation of the immune system, possible inflammatory effects on macrophages upon contact with PHMB-coated surfaces alone and after killing of S. epidermidis and P. aeruginosa are analyzed. Methods THP-1 monocytes were differentiated to M0 macrophages by phorbol 12-myristate 13-acetate and seeded onto Ti6Al4V surfaces coated with various amounts of PHMB. Next to microscopic immunofluorescence analysis of labeled macrophages after adhesion on the coated surface, measurement of intracellular reactive oxygen species and analysis of cytokine secretion at different time points without and with previous bacterial contamination were conducted. Results No influence on morphology of macrophages and only slight increases in iROS generation were detected. The cytokine secretion pattern depends on the surface treatment procedure and the amount of adsorbed PHMB. The PHMB coating resulted in a high reduction of viable bacteria, resulting in no significant differences in cytokine secretion as reaction to coated surfaces with and without bacterial burden. Conclusion Ti6Al4V specimens after alkaline treatment followed by coating with 5–7 μg PHMB and specimens treated with H2O2 before PHMB-coating (4 μg) had the smallest influence on the macrophage phienotype and thus are considered as the surface with the best cytocompatibility to macrophages tested in the present study.

Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 10
Alexander Pestov ◽  
Yuliya Privar ◽  
Arseny Slobodyuk ◽  
Andrey Boroda ◽  
Svetlana Bratskaya

Here we demonstrate the possibility of using acyclic diethylacetal of acetaldehyde (ADA) with low cytotoxicity for the fabrication of hydrogels via Schiff bases formation between chitosan and acetaldehyde generated in situ from acetals in chitosan acetate solution. This approach is more convenient than a direct reaction between chitosan and acetaldehyde due to the better commercial availability and higher boiling point of the acetals. Rheological data confirmed the formation of intermolecular bonds in chitosan solution after the addition of acetaldehyde diethyl acetal at an equimolar NH2: acetal ratio. The chemical structure of the reaction products was determined using elemental analysis and 13C NMR and FT-IR spectroscopy. The formed chitosan-acetylimine underwent further irreversible redox transformations yielding a mechanically stable hydrogel insoluble in a broad pH range. The reported reaction is an example of when an inappropriate selection of acid type for chitosan dissolution prevents hydrogel formation.

2022 ◽  
Vol 20 (1) ◽  
Zhenzhen Yang ◽  
Anli Yang ◽  
Wang Ma ◽  
Kai Ma ◽  
Ya-Kun Lv ◽  

Abstract Background Reactive oxygen species (ROS) have been widely studied for cancer therapy. Nevertheless, instability and aspecific damages to cellular biomolecules limit the application effect. Recently, significant research efforts have been witnessed in the flourishing area of metal nanoclusters (NCs) with atomically precise structures for targeted release of ROS but few achieved success towards targeting tumor microenvironment. Results In this work, we reported an atomically precise nanocluster Cu6(C4H3N2S)6 (Cu6NC), which could slowly break and generate ROS once encountered with acidic. The as-prepared Cu6NC demonstrated high biological safety and efficient chemodynamic anti-tumor properties. Moreover, Cu6NC enabled transient release of ROS and contained targeting behavior led by the tumor microenvironment. Both in vitro and in vivo experiments confirmed that Cu6NC demonstrated a low cytotoxicity for normal cells, while presented high cytotoxicity for tumor cells with a concentration-dependent manner. Conclusions This work not only reported a promising candidate for chemodynamic cancer therapy, but also paved the route to address clinical issues at the atomic level. Graphical Abstract

2021 ◽  
Vol 15 (1) ◽  
pp. 51
Pedro Cruz-Vicente ◽  
Ana M. Gonçalves ◽  
Octávio Ferreira ◽  
João A. Queiroz ◽  
Samuel Silvestre ◽  

A pharmacophore-based virtual screening methodology was used to discover new catechol-O-methyltransferase (COMT) inhibitors with interest in Parkinson’s disease therapy. To do so, pharmacophore models were constructed using the structure of known inhibitors and then they were used in a screening in the ZINCPharmer database to discover hit molecules with the desired structural moieties and drug-likeness properties. Following this, the 50 best ranked molecules were submitted to molecular docking to better understand their atomic interactions and binding poses with the COMT (PDB#6I3C) active site. Additionally, the hits’ ADMET properties were also studied to improve the obtained results and to select the most promising compounds to advance for in-vitro studies. Then, the 10 compounds selected were purchased and studied regarding their in-vitro inhibitory potency on human recombinant membrane-bound COMT (MBCOMT), as well as their cytotoxicity in rat dopaminergic cells (N27) and human dermal fibroblasts (NHDF). Of these, the compound ZIN27985035 displayed the best results: For MBCOMT inhibition an IC50 of 17.6 nM was determined, and low cytotoxicity was observed in both cell lines (61.26 and 40.32 μM, respectively). Therefore, the promising results obtained, combined with the structure similarity with commercial COMT inhibitors, can allow for the future development of a potential new Parkinson’s disease drug candidate with improved properties.

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 131
Andrei A. Dudun ◽  
Elizaveta A. Akoulina ◽  
Vsevolod A. Zhuikov ◽  
Tatiana K. Makhina ◽  
Vera V. Voinova ◽  

This study investigated the effect of various cultivation conditions (sucrose/phosphate concentrations, aeration level) on alginate biosynthesis using the bacterial producing strain Azotobacter vinelandii 12 by the full factorial design (FFD) method and physicochemical properties (e.g., rheological properties) of the produced bacterial alginate. We demonstrated experimentally the applicability of bacterial alginate for tissue engineering (the cytotoxicity testing using mesenchymal stem cells (MSCs)). The isolated synthesis of high molecular weight (Mw) capsular alginate with a high level of acetylation (25%) was achieved by FFD method under a low sucrose concentration, an increased phosphate concentration, and a high aeration level. Testing the viscoelastic properties and cytotoxicity showed that bacterial alginate with a maximal Mw (574 kDa) formed the densest hydrogels (which demonstrated relatively low cytotoxicity for MSCs in contrast to bacterial alginate with low Mw). The obtained data have shown promising prospects in controlled biosynthesis of bacterial alginate with different physicochemical characteristics for various biomedical applications including tissue engineering.

Sign in / Sign up

Export Citation Format

Share Document