scholarly journals A Note on a Generalized Gerber–Shiu Discounted Penalty Function for a Compound Poisson Risk Model

Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 891 ◽  
Author(s):  
Jiechang Ruan ◽  
Wenguang Yu ◽  
Ke Song ◽  
Yihan Sun ◽  
Yujuan Huang ◽  
...  

In this paper, we propose a new generalized Gerber–Shiu discounted penalty function for a compound Poisson risk model, which can be used to study the moments of the ruin time. First, by taking derivatives with respect to the original Gerber–Shiu discounted penalty function, we construct a relation between the original Gerber–Shiu discounted penalty function and our new generalized Gerber–Shiu discounted penalty function. Next, we use Laplace transform to derive a defective renewal equation for the generalized Gerber–Shiu discounted penalty function, and give a recursive method for solving the equation. Finally, when the claim amounts obey the exponential distribution, we give some explicit expressions for the generalized Gerber–Shiu discounted penalty function. Numerical illustrations are also given to study the effect of the parameters on the generalized Gerber–Shiu discounted penalty function.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Donghai Liu ◽  
Zaiming Liu ◽  
Dan Peng

We consider a compound Poisson risk model with dependence and a constant dividend barrier. A dependence structure between the claim amount and the interclaim time is introduced through a Farlie-Gumbel-Morgenstern copula. An integrodifferential equation for the Gerber-Shiu discounted penalty function is derived. We also solve the integrodifferential equation and show that the solution is a linear combination of the Gerber-Shiu function with no barrier and the solution of an associated homogeneous integrodifferential equation.


2012 ◽  
Vol 2012 ◽  
pp. 1-26 ◽  
Author(s):  
Yan Li ◽  
Guoxin Liu

We consider the dynamic proportional reinsurance in a two-dimensional compound Poisson risk model. The optimization in the sense of minimizing the ruin probability which is defined by the sum of subportfolio is being ruined. Via the Hamilton-Jacobi-Bellman approach we find a candidate for the optimal value function and prove the verification theorem. In addition, we obtain the Lundberg bounds and the Cramér-Lundberg approximation for the ruin probability and show that as the capital tends to infinity, the optimal strategies converge to the asymptotically optimal constant strategies. The asymptotic value can be found by maximizing the adjustment coefficient.


Sign in / Sign up

Export Citation Format

Share Document