scholarly journals Cohomology of Homotopy Colimits of Simplicial Sets and Small Categories

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 981
Author(s):  
Antonio M. Cegarra

This paper deals with well-known weak homotopy equivalences that relate homotopy colimits of small categories and simplicial sets. We show that these weak homotopy equivalences have stronger cohomology-preserving properties than for local coefficients.

Author(s):  
Friedhelm Waldhausen ◽  
Bjørn Jahren ◽  
John Rognes

This chapter deals with simple maps of finite simplicial sets, along with some of their formal properties. It begins with a discussion of simple maps of simplicial sets, presenting a proposition for the conditions that qualify a map of finite simplicial sets as a simple map. In particular, it considers a simple map as a weak homotopy equivalence. Weak homotopy equivalences have the 2-out-of-3 property, which combines the composition, right cancellation and left cancellation properties. The chapter proceeds by defining some relevant terms, such as Euclidean neighborhood retract, absolute neighborhood retract, Čech homotopy type, and degeneracy operator. It also describes normal subdivision of simplicial sets, geometric realization and subdivision, the reduced mapping cylinder, how to make simplicial sets non-singular, and the approximate lifting property.


2019 ◽  
Vol 15 (1) ◽  
pp. 143-165
Author(s):  
Sean Moss

Abstract By careful analysis of the embedding of a simplicial set into its image under Kan’s $$\mathop {\mathop {\mathsf {Ex}}^\infty }$$Ex∞ functor we obtain a new and combinatorial proof that it is a weak homotopy equivalence. Moreover, we obtain a presentation of it as a strong anodyne extension. From this description we can quickly deduce some basic facts about $$\mathop {\mathop {\mathsf {Ex}}^\infty }$$Ex∞ and hence provide a new construction of the Kan–Quillen model structure on simplicial sets, one which avoids the use of topological spaces or minimal fibrations.


Author(s):  
Friedhelm Waldhausen ◽  
Bjørn Jahren ◽  
John Rognes

Since its introduction by the author in the 1970s, the algebraic K-theory of spaces has been recognized as the main tool for studying parametrized phenomena in the theory of manifolds. However, a full proof of the equivalence relating the two areas has not appeared until now. This book presents such a proof, essentially completing the author's program from more than thirty years ago. The main result is a stable parametrized h-cobordism theorem, derived from a homotopy equivalence between a space of PL h-cobordisms on a space X and the classifying space of a category of simple maps of spaces having X as deformation retract. The smooth and topological results then follow by smoothing and triangulation theory. The proof has two main parts. The essence of the first part is a “desingularization,” improving arbitrary finite simplicial sets to polyhedra. The second part compares polyhedra with PL manifolds by a thickening procedure. Many of the techniques and results developed should be useful in other connections.


Author(s):  
Olivia Caramello

This chapter discusses several classical as well as new examples of theories of presheaf type from the perspective of the theory developed in the previous chapters. The known examples of theories of presheaf type that are revisited in the course of the chapter include the theory of intervals (classified by the topos of simplicial sets), the theory of linear orders, the theory of Diers fields, the theory of abstract circles (classified by the topos of cyclic sets) and the geometric theory of finite sets. The new examples include the theory of algebraic (or separable) extensions of a given field, the theory of locally finite groups, the theory of vector spaces with linear independence predicates and the theory of lattice-ordered abelian groups with strong unit.


1999 ◽  
Vol 33 (3) ◽  
pp. 17
Author(s):  
L. Lambán ◽  
V. Pascual ◽  
J. Rubío
Keyword(s):  

2015 ◽  
Vol 1101 ◽  
pp. 471-479
Author(s):  
Georges Freiha ◽  
Hiba Othman ◽  
Michel Owayjan

The study of signals propagation inside porous media is an important field especially in the biomedical research related to compact bones. The purpose of this paper is to determine a mathematical formulation of the global coefficients of transmission and reflection of nondestructive ultrasonic waves in any bi-phase porous medium. Local coefficients of transmission and reflection on the interface of the porous medium will be determined based on a study of boundary conditions. The behavior of different waves inside the porous medium will be developed so that we can derive a new formulation of global coefficients that takes interior phenomena into consideration. Results are found independently of the geometrical and physical characteristics of the medium. Note that this study is based on normal incident ultrasonic wave propagation.


2006 ◽  
Vol 207 (2) ◽  
pp. 847-875 ◽  
Author(s):  
Kathryn Hess ◽  
Paul-Eugène Parent ◽  
Jonathan Scott ◽  
Andrew Tonks
Keyword(s):  

2018 ◽  
Vol 83 (04) ◽  
pp. 1667-1679
Author(s):  
MATÍAS MENNI

AbstractLet ${\cal E}$ be a topos, ${\rm{Dec}}\left( {\cal E} \right) \to {\cal E}$ be the full subcategory of decidable objects, and ${{\cal E}_{\neg \,\,\neg }} \to {\cal E}$ be the full subcategory of double-negation sheaves. We give sufficient conditions for the existence of a Unity and Identity ${\cal E} \to {\cal S}$ for the two subcategories of ${\cal E}$ above, making them Adjointly Opposite. Typical examples of such ${\cal E}$ include many ‘gros’ toposes in Algebraic Geometry, simplicial sets and other toposes of ‘combinatorial’ spaces in Algebraic Topology, and certain models of Synthetic Differential Geometry.


Sign in / Sign up

Export Citation Format

Share Document