weak homotopy
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 7)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 157 (4) ◽  
pp. 770-808
Author(s):  
Tsuyoshi Kato ◽  
Hokuto Konno ◽  
Nobuhiro Nakamura

We show a rigidity theorem for the Seiberg–Witten invariants mod 2 for families of spin 4-manifolds. A mechanism of this rigidity theorem also gives a family version of 10/8-type inequality. As an application, we prove the existence of non-smoothable topological families of 4-manifolds whose fiber, base space, and total space are smoothable as manifolds. These non-smoothable topological families provide new examples of $4$ -manifolds $M$ for which the inclusion maps $\operatorname {Diff}(M) \hookrightarrow \operatorname {Homeo}(M)$ are not weak homotopy equivalences. We shall also give a new series of non-smoothable topological actions on some spin $4$ -manifolds.


2020 ◽  
Vol 13 (2) ◽  
pp. 68-108
Author(s):  
Олександра Олександрівна Хохлюк ◽  
Sergiy Ivanovych Maksymenko

Let $M, N$ the be smooth manifolds, $\mathcal{C}^{r}(M,N)$ the space of ${C}^{r}$ maps endowed with the corresponding weak Whitney topology, and $\mathcal{B} \subset \mathcal{C}^{r}(M,N)$ an open subset.It is proved that for $0<r<s\leq\infty$ the inclusion $\mathcal{B} \cap \mathcal{C}^{s}(M,N) \subset \mathcal{B}$ is a weak homotopy equivalence.It is also established a parametrized variant of such a result.In particular, it is shown that for a compact manifold $M$, the inclusion of the space of $\mathcal{C}^{s}$ isotopies $\eta:[0,1]\times M \to M$ fixed near $\{0,1\}\times M$ into the space of loops $\Omega(\mathcal{D}^{r}(M), \mathrm{id}_{M})$ of the group of $\mathcal{C}^{r}$ diffeomorphisms of $M$ at $\mathrm{id}_{M}$ is a weak homotopy equivalence.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 981
Author(s):  
Antonio M. Cegarra

This paper deals with well-known weak homotopy equivalences that relate homotopy colimits of small categories and simplicial sets. We show that these weak homotopy equivalences have stronger cohomology-preserving properties than for local coefficients.


2019 ◽  
Vol 15 (1) ◽  
pp. 143-165
Author(s):  
Sean Moss

Abstract By careful analysis of the embedding of a simplicial set into its image under Kan’s $$\mathop {\mathop {\mathsf {Ex}}^\infty }$$Ex∞ functor we obtain a new and combinatorial proof that it is a weak homotopy equivalence. Moreover, we obtain a presentation of it as a strong anodyne extension. From this description we can quickly deduce some basic facts about $$\mathop {\mathop {\mathsf {Ex}}^\infty }$$Ex∞ and hence provide a new construction of the Kan–Quillen model structure on simplicial sets, one which avoids the use of topological spaces or minimal fibrations.


2019 ◽  
Vol 147 (11) ◽  
pp. 4987-4998
Author(s):  
Manuel Rivera ◽  
Felix Wierstra ◽  
Mahmoud Zeinalian
Keyword(s):  

2018 ◽  
Vol 62 (2) ◽  
pp. 553-558
Author(s):  
Jonathan Ariel Barmak

AbstractIt is well known that if X is a CW-complex, then for every weak homotopy equivalence f : A → B, the map f* : [X, A] → [X, B] induced in homotopy classes is a bijection. In fact, up to homotopy equivalence, only CW-complexes have that property. Now, for which spaces X is f* : [B, X] → [A, X] a bijection for every weak equivalence f? This question was considered by J. Strom and T. Goodwillie. In this note we prove that a non-empty space inverts weak equivalences if and only if it is contractible.


Sign in / Sign up

Export Citation Format

Share Document