scholarly journals Waiting Time Problems for Patterns in a Sequence of Multi-State Trials

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1893
Author(s):  
Bara Kim ◽  
Jeongsim Kim ◽  
Jerim Kim

In this paper, we investigate waiting time problems for a finite collection of patterns in a sequence of independent multi-state trials. By constructing a finite GI/M/1-type Markov chain with a disaster and then using the matrix analytic method, we can obtain the probability generating function of the waiting time. From this, we can obtain the stopping probabilities and the mean waiting time, but it also enables us to compute the waiting time distribution by a numerical inversion.

2008 ◽  
Vol 2008 ◽  
pp. 1-20 ◽  
Author(s):  
B. Krishna Kumar ◽  
R. Rukmani ◽  
V. Thangaraj

We consider a two-heterogeneous-server queueing system with Bernoulli vacation in which customers arrive according to a Markovian arrival process (MAP). Servers returning from vacation immediately take another vacation if no customer is waiting. Using matrix-geometric method, the steady-state probability of the number of customers in the system is investigated. Some important performance measures are obtained. The waiting time distribution and the mean waiting time are also discussed. Finally, some numerical illustrations are provided.


2005 ◽  
Vol 42 (02) ◽  
pp. 478-490
Author(s):  
De-An Wu ◽  
Hideaki Takagi

We consider single-server queues with exponentially distributed service times, in which the arrival process is governed by a semi-Markov process (SMP). Two service disciplines, processor sharing (PS) and random service (RS), are investigated. We note that the sojourn time distribution of a type-lcustomer who, upon his arrival, meetskcustomers already present in the SMP/M/1/PS queue is identical to the waiting time distribution of a type-lcustomer who, upon his arrival, meetsk+1 customers already present in the SMP/M/1/RS queue. Two sets of system equations, one for the joint transform of the sojourn time and queue size distributions in the SMP/M/1/PS queue, and the other for the joint transform of the waiting time and queue size distributions in the SMP/M/1/RS queue, are derived. Using these equations, the mean sojourn time in the SMP/M/1/PS queue and the mean waiting time in the SMP/M/1/RS queue are obtained. We also consider a special case of the SMP in which the interarrival time distribution is determined only by the type of the customer who has most recently arrived. Numerical examples are also presented.


1982 ◽  
Vol 19 (03) ◽  
pp. 518-531 ◽  
Author(s):  
Gunnar Blom ◽  
Daniel Thorburn

Random digits are collected one at a time until a given k -digit sequence is obtained, or, more generally, until one of several k -digit sequences is obtained. In the former case, a recursive formula is given, which determines the distribution of the waiting time until the sequence is obtained and leads to an expression for the probability generating function. In the latter case, the mean waiting time is given until one of the given sequences is obtained, or, more generally, until a fixed number of sequences have been obtained, either different sequences or not necessarily different ones. Several results are known before, but the methods of proof seem to be new.


1987 ◽  
Vol 19 (1) ◽  
pp. 289-291 ◽  
Author(s):  
Christine Fricker

Keilson and Servi introduced in [5] a variation of a GI/G/1 queue with vacation, in which at the end of a service time, either the server is not idle, and he starts serving the first customer in the queue with probability p, or goes on vacation with probability 1 – p, or he is idle, and he takes a vacation. At the end of a vacation, either customers are present, and the server starts serving the first customer, or he is idle, and he takes a vacation. The case p = 1, called the GI/G/1/V queue, was studied analytically by Gelenbe and Iasnogorodski [3] (see also [4]) and then by Doshi [1] and Fricker [2] who obtained stochastic decomposition results on the waiting-time of the nth customer extending the law decomposition result of [3]. Keilson and Servi [5] give a more complete analytic method of treating both the GI/G/1/V model and the Bernoulli vacation model: instead of the waiting time, they use a bivariate process at the service and vacation initiation epochs and the waiting-time distribution is computed as a conditional distribution of the above. In this note the law decomposition result is obtained from a reduction to the GI/G/1/V model with a modified service-time distribution just using the waiting time, with simple path arguments so that by [1] and [2] stochastic decomposition results are valid, which extend the result of [5].


1981 ◽  
Vol 13 (03) ◽  
pp. 619-630 ◽  
Author(s):  
Yukio Takahashi

It is shown that, in a multiserver queue with interarrival and service-time distributions of phase type (PH/PH/c), the waiting-time distributionW(x) has an asymptotically exponential tail, i.e., 1 –W(x) ∽Ke–ckx. The parameter k is the unique positive number satisfyingT*(ck)S*(–k) = 1, whereT*(s) andS*(s) are the Laplace–Stieltjes transforms of the interarrival and the service-time distributions. It is also shown that the queue-length distribution has an asymptotically geometric tail with the rate of decay η =T*(ck). The proofs of these results are based on the matrix-geometric form of the state probabilities of the system in the steady state.The equation for k shows interesting relations between single- and multiserver queues in the rates of decay of the tails of the waiting-time and the queue-length distributions.The parameters k and η can be easily computed by solving an algebraic equation. The multiplicative constantKis not so easy to compute. In order to obtain its numerical value we have to solve the balance equations or estimate it from simulation.


1987 ◽  
Vol 19 (01) ◽  
pp. 289-291
Author(s):  
Christine Fricker

Keilson and Servi introduced in [5] a variation of a GI/G/1 queue with vacation, in which at the end of a service time, either the server is not idle, and he starts serving the first customer in the queue with probability p, or goes on vacation with probability 1 – p, or he is idle, and he takes a vacation. At the end of a vacation, either customers are present, and the server starts serving the first customer, or he is idle, and he takes a vacation. The case p = 1, called the GI/G/1/V queue, was studied analytically by Gelenbe and Iasnogorodski [3] (see also [4]) and then by Doshi [1] and Fricker [2] who obtained stochastic decomposition results on the waiting-time of the nth customer extending the law decomposition result of [3]. Keilson and Servi [5] give a more complete analytic method of treating both the GI/G/1/V model and the Bernoulli vacation model: instead of the waiting time, they use a bivariate process at the service and vacation initiation epochs and the waiting-time distribution is computed as a conditional distribution of the above. In this note the law decomposition result is obtained from a reduction to the GI/G/1/V model with a modified service-time distribution just using the waiting time, with simple path arguments so that by [1] and [2] stochastic decomposition results are valid, which extend the result of [5].


2013 ◽  
Vol 27 (4) ◽  
pp. 471-506 ◽  
Author(s):  
Song-Hee Kim ◽  
Ward Whitt

When waiting times cannot be observed directly, Little's law can be applied to estimate the average waiting time by the average number in system divided by the average arrival rate, but that simple indirect estimator tends to be biased significantly when the arrival rates are time-varying and the service times are relatively long. Here it is shown that the bias in that indirect estimator can be estimated and reduced by applying the time-varying Little's law (TVLL). If there is appropriate time-varying staffing, then the waiting time distribution may not be time-varying even though the arrival rate is time varying. Given a fixed waiting time distribution with unknown mean, there is a unique mean consistent with the TVLL for each time t. Thus, under that condition, the TVLL provides an estimator for the unknown mean wait, given estimates of the average number in system over a subinterval and the arrival rate function. Useful variants of the TVLL estimator are obtained by fitting a linear or quadratic function to arrival data. When the arrival rate function is approximately linear (quadratic), the mean waiting time satisfies a quadratic (cubic) equation. The new estimator based on the TVLL is a positive real root of that equation. The new methods are shown to be effective in estimating the bias in the indirect estimator and reducing it, using simulations of multi-server queues and data from a call center.


2005 ◽  
Vol 42 (2) ◽  
pp. 478-490 ◽  
Author(s):  
De-An Wu ◽  
Hideaki Takagi

We consider single-server queues with exponentially distributed service times, in which the arrival process is governed by a semi-Markov process (SMP). Two service disciplines, processor sharing (PS) and random service (RS), are investigated. We note that the sojourn time distribution of a type-l customer who, upon his arrival, meets k customers already present in the SMP/M/1/PS queue is identical to the waiting time distribution of a type-l customer who, upon his arrival, meets k+1 customers already present in the SMP/M/1/RS queue. Two sets of system equations, one for the joint transform of the sojourn time and queue size distributions in the SMP/M/1/PS queue, and the other for the joint transform of the waiting time and queue size distributions in the SMP/M/1/RS queue, are derived. Using these equations, the mean sojourn time in the SMP/M/1/PS queue and the mean waiting time in the SMP/M/1/RS queue are obtained. We also consider a special case of the SMP in which the interarrival time distribution is determined only by the type of the customer who has most recently arrived. Numerical examples are also presented.


1982 ◽  
Vol 19 (3) ◽  
pp. 518-531 ◽  
Author(s):  
Gunnar Blom ◽  
Daniel Thorburn

Random digits are collected one at a time until a given k -digit sequence is obtained, or, more generally, until one of several k -digit sequences is obtained. In the former case, a recursive formula is given, which determines the distribution of the waiting time until the sequence is obtained and leads to an expression for the probability generating function. In the latter case, the mean waiting time is given until one of the given sequences is obtained, or, more generally, until a fixed number of sequences have been obtained, either different sequences or not necessarily different ones. Several results are known before, but the methods of proof seem to be new.


Author(s):  
J. F. C. Kingman

It is usual in the theory of queues to assume that customers are served in the order of their arrival. In some applications (e.g. telephone engineering), however, other forms of queue discipline are more realistic. The precise effect of any such change on the waiting-time distribution of a customer will depend on the procedure envisaged (random service, “last come, first served”, etc.), but it is possible to make certain general statements. Thus it is well known that, under certain conditions, the mean is independent of the queue discipline. The purpose of the present note is to consider the variance of waiting time, and we shall prove that this is a minimum when the customers are served in order of arrival. Thus this is, in a sense, the “fairest” queue discipline. This does not, of course, mean that other procedures may not be justified when different criteria are taken into account.


Sign in / Sign up

Export Citation Format

Share Document