scholarly journals Some Relationships for the Generalized Integral Transform on Function Space

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2246
Author(s):  
Hyun Chung

In this paper, we recall a more generalized integral transform, a generalized convolution product and a generalized first variation on function space. The Gaussian process and the bounded linear operators on function space are used to define them. We then establish the existence and various relationships between the generalized integral transform and the generalized convolution product. Furthermore, we obtain some relationships between the generalized integral transform and the generalized first variation with the generalized Cameron–Storvick theorem. Finally, some applications are demonstrated as examples.

Filomat ◽  
2012 ◽  
Vol 26 (6) ◽  
pp. 1151-1162 ◽  
Author(s):  
Hyun Chung ◽  
Jae Choi ◽  
Seung Chang

In this paper we study the conditional integral transform, the conditional convolution product and the first variation of functionals on function space. For our research, we modify the class S? of functionals introduced in [7]. We then give the existences of the conditional integral transform, the conditional convolution product and the first variation for functionals in S?. Finally, we give various relationships and formulas among conditional integral transforms, conditional convolution products and first variations of functionals in S?.


Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2249-2255
Author(s):  
Huanyin Chen ◽  
Marjan Abdolyousefi

It is well known that for an associative ring R, if ab has g-Drazin inverse then ba has g-Drazin inverse. In this case, (ba)d = b((ab)d)2a. This formula is so-called Cline?s formula for g-Drazin inverse, which plays an elementary role in matrix and operator theory. In this paper, we generalize Cline?s formula to the wider case. In particular, as applications, we obtain new common spectral properties of bounded linear operators.


Author(s):  
JinRong Wang ◽  
Ahmed G. Ibrahim ◽  
Donal O’Regan ◽  
Adel A. Elmandouh

AbstractIn this paper, we establish the existence of mild solutions for nonlocal fractional semilinear differential inclusions with noninstantaneous impulses of order α ∈ (1,2) and generated by a cosine family of bounded linear operators. Moreover, we show the compactness of the solution set. We consider both the case when the values of the multivalued function are convex and nonconvex. Examples are given to illustrate the theory.


Author(s):  
Hans-Olav Tylli

Special operator-ideal approximation properties (APs) of Banach spaces are employed to solve the problem of whether the distance functions S ↦ dist(S*, I(F*, E*)) and S ↦ dist(S, I*(E, F)) are uniformly comparable in each space L(E, F) of bounded linear operators. Here, I*(E, F) = {S ∈ L(E, F) : S* ∈ I(F*, E*)} stands for the adjoint ideal of the closed operator ideal I for Banach spaces E and F. Counterexamples are obtained for many classical surjective or injective Banach operator ideals I by solving two resulting ‘asymmetry’ problems for these operator-ideal APs.


Sign in / Sign up

Export Citation Format

Share Document