differential inclusions
Recently Published Documents


TOTAL DOCUMENTS

1772
(FIVE YEARS 267)

H-INDEX

48
(FIVE YEARS 7)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 224
Author(s):  
Paola Rubbioni

In this paper, we study a semilinear integro-differential inclusion in Banach spaces, under the action of infinitely many impulses. We provide the existence of mild solutions on a half-line by means of the so-called extension-with-memory technique, which consists of breaking down the problem in an iterate sequence of non-impulsive Cauchy problems, each of them originated by a solution of the previous one. The key that allows us to employ this method is the definition of suitable auxiliary set-valued functions that imitate the original set-valued nonlinearity at any step of the problem’s iteration. As an example of application, we deduce the controllability of a population dynamics process with distributed delay and impulses. That is, we ensure the existence of a pair trajectory-control, meaning a possible evolution of a population and of a feedback control for a system that undergoes sudden changes caused by external forces and depends on its past with fading memory.


2022 ◽  
Vol 7 (3) ◽  
pp. 3477-3493
Author(s):  
Adel Lachouri ◽  
◽  
Mohammed S. Abdo ◽  
Abdelouaheb Ardjouni ◽  
Bahaaeldin Abdalla ◽  
...  

<abstract><p>In the present paper, we extend and develop a qualitative analysis for a class of nonlinear fractional inclusion problems subjected to nonlocal integral boundary conditions (nonlocal IBC) under the $ \varphi $-Hilfer operator. Both claims of convex valued and nonconvex valued right-hand sides are investigated. The obtained existence results of the proposed problem are new in the frame of a $ \varphi $-Hilfer fractional derivative with nonlocal IBC, which are derived via the fixed point theorems (FPT's) for set-valued analysis. Eventually, we give some illustrative examples for the acquired results.</p></abstract>


2021 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
M. Syed Ali ◽  
M. Hymavathi ◽  
Syeda Asma Kauser ◽  
Grienggrai Rajchakit ◽  
Porpattama Hammachukiattikul ◽  
...  

This article examines the drive-response synchronization of a class of fractional order uncertain BAM (Bidirectional Associative Memory) competitive neural networks. By using the differential inclusions theory, and constructing a proper Lyapunov-Krasovskii functional, novel sufficient conditions are obtained to achieve global asymptotic stability of fractional order uncertain BAM competitive neural networks. This novel approach is based on the linear matrix inequality (LMI) technique and the derived conditions are easy to verify via the LMI toolbox. Moreover, numerical examples are presented to show the feasibility and effectiveness of the theoretical results.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Valeria Marraffa ◽  
Bianca Satco

We are studying first order differential inclusions with periodic boundary conditions where the Stieltjes derivative with respect to a left-continuous non-decreasing function replaces the classical derivative. The involved set-valued mapping is not assumed to have compact and convex values, nor to be upper semicontinuous concerning the second argument everywhere, as in other related works. A condition involving the contingent derivative relative to the non-decreasing function (recently introduced and applied to initial value problems by R.L. Pouso, I.M. Marquez Albes, and J. Rodriguez-Lopez) is imposed on the set where the upper semicontinuity and the assumption to have compact convex values fail. Based on previously obtained results for periodic problems in the single-valued cases, the existence of solutions is proven. It is also pointed out that the solution set is compact in the uniform convergence topology. In particular, the existence results are obtained for periodic impulsive differential inclusions (with multivalued impulsive maps and finite or possibly countable impulsive moments) without upper semicontinuity assumptions on the right-hand side, and also the existence of solutions is derived for dynamic inclusions on time scales with periodic boundary conditions.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3265
Author(s):  
Ali N. A. Koam ◽  
Tzanko Donchev ◽  
Alina I. Lazu ◽  
Muhammad Rafaqat ◽  
Ali Ahmad

Using the notion of limit solution, we study multivalued perturbations of m-dissipative differential inclusions with nonlocal initial conditions. These solutions enable us to work in general Banach spaces, in particular L1. The commonly used Lipschitz condition on the right-hand side is weakened to a one-sided Lipschitz one. No compactness assumptions are required. We consider the cases of an arbitrary one-sided Lipschitz condition and the case of a negative one-sided Lipschitz constant. Illustrative examples, which can be modifications of real models, are provided.


2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Jan Andres

A multivalued version of the Ivanov inequality for the lower estimate of topological entropy of admissible maps is applied to differential inclusions with multivalued impulses on tori via the associated Poincaré translation operators along their trajectories. The topological chaos in the sense of a positive topological entropy is established in terms of the asymptotic Nielsen numbers of the impulsive maps being greater than 1. This condition implies at the same time the existence of subharmonic periodic solutions with infinitely many variety of periods. Under a similar condition, the coexistence of subharmonic periodic solutions of all natural orders is also carried out.


2021 ◽  
Vol 30 (4) ◽  
pp. 899-960
Author(s):  
Camillo De Lellis ◽  
Guido De Philippis ◽  
Bernd Kirchheim ◽  
Riccardo Tione

Sign in / Sign up

Export Citation Format

Share Document