scholarly journals Comparisons of Parallel Systems with Components Having Proportional Reversed Hazard Rates and Starting Devices

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 856
Author(s):  
Narayanaswamy Balakrishnan ◽  
Ghobad Barmalzan ◽  
Sajad Kosari

In this paper, we consider stochastic comparisons of parallel systems with proportional reversed hazard rate (PRHR) distributed components equipped with starting devices. By considering parallel systems with two components that PRHR and starting devices, we prove the hazard rate and reversed hazard rate orders. These results are then generalized for such parallel systems with n components in terms of usual stochastic order. The establish results are illustrated with some examples.

2017 ◽  
Vol 33 (1) ◽  
pp. 28-49
Author(s):  
Narayanaswamy Balakrishnan ◽  
Jianbin Chen ◽  
Yiying Zhang ◽  
Peng Zhao

In this paper, we discuss the ordering properties of sample ranges arising from multiple-outlier exponential and proportional hazard rate (PHR) models. The purpose of this paper is twofold. First, sufficient conditions on the parameter vectors are provided for the reversed hazard rate order and the usual stochastic order between the sample ranges arising from multiple-outlier exponential models with common sample size. Next, stochastic comparisons are separately carried out for sample ranges arising from multiple-outlier exponential and PHR models with different sample sizes as well as different hazard rates. Some numerical examples are also presented to illustrate the results established here.


2012 ◽  
Vol 26 (2) ◽  
pp. 159-182 ◽  
Author(s):  
Peng Zhao ◽  
N. Balakrishnan

In this paper, we carry out stochastic comparisons of largest order statistics from multiple-outlier exponential models according to the likelihood ratio order (reversed hazard rate order) and the hazard rate order (usual stochastic order). It is proved, among others, that the weak majorization order between the two hazard rate vectors is equivalent to the likelihood ratio order (reversed hazard rate order) between largest order statistics, and that the p-larger order between the two hazard rate vectors is equivalent to the hazard rate order (usual stochastic order) between largest order statistics. We also extend these results to the proportional hazard rate models. The results established here strengthen and generalize some of the results known in the literature.


Author(s):  
Ghobad Barmalzan ◽  
Sajad Kosari ◽  
Narayanaswamy Balakrishnan

In this paper, we consider finite mixture models with components having distributions from the location-scale family. We then discuss the usual stochastic order and the reversed hazard rate order of such finite mixture models under some majorization conditions on location, scale and mixing probabilities as model parameters.


2008 ◽  
Vol 22 (3) ◽  
pp. 473-474 ◽  
Author(s):  
Subhash Kochar ◽  
Maochao Xu

In our article [3] we have found a gap in the middle of the proof of Theorem 3.2. Therefore, we do not know whether Theorem 3.2 is true for the reverse hazard rate order. However, we could prove the following weaker result for the stochastic order.


2008 ◽  
Vol 23 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Peng Zhao ◽  
Xiaohu Li

Let X1, …, Xn be independent exponential random variables with their respective hazard rates λ1, …, λn, and let Y1, …, Yn be independent exponential random variables with common hazard rate λ. Denote by Xn:n, Yn:n and X1:n, Y1:n the corresponding maximum and minimum order statistics. Xn:n−X1:n is proved to be larger than Yn:n−Y1:n according to the usual stochastic order if and only if $\lambda \geq \left({\bar{\lambda}}^{-1}\prod\nolimits^{n}_{i=1}\lambda_{i}\right)^{{1}/{(n-1)}}$ with $\bar{\lambda}=\sum\nolimits^{n}_{i=1}\lambda_{i}/n$. Further, this usual stochastic order is strengthened to the hazard rate order for n=2. However, a counterexample reveals that this can be strengthened neither to the hazard rate order nor to the reversed hazard rate order in the general case. The main result substantially improves those related ones obtained in Kochar and Rojo and Khaledi and Kochar.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fatih Kızılaslan

PurposeThe purpose of this paper is to investigate the stochastic comparisons of the parallel system with independent heterogeneous Gumbel components and series and parallel systems with independent heterogeneous truncated Gumbel components in terms of various stochastic orderings.Design/methodology/approachThe obtained results in this paper are obtained by using the vector majorization methods and results. First, the components of series and parallel systems are heterogeneous and having Gumbel or truncated Gumbel distributions. Second, multiple-outlier truncated Gumbel models are discussed for these systems. Then, the relationship between the systems having Gumbel components and Weibull components are considered. Finally, Monte Carlo simulations are performed to illustrate some obtained results.FindingsThe reversed hazard rate and likelihood ratio orderings are obtained for the parallel system of Gumbel components. Using these results, similar new results are derived for the series system of Weibull components. Stochastic comparisons for the series and parallel systems having truncated Gumbel components are established in terms of hazard rate, likelihood ratio and reversed hazard rate orderings. Some new results are also derived for the series and parallel systems of upper-truncated Weibull components.Originality/valueTo the best of our knowledge thus far, stochastic comparisons of series and parallel systems with Gumbel or truncated Gumble components have not been considered in the literature. Moreover, new results for Weibull and upper-truncated Weibull components are presented based on Gumbel case results.


Author(s):  
Bin Lu ◽  
Jiandong Zhang ◽  
Rongfang Yan

Abstract This paper studies the optimal allocation policy of a coherent system with independent heterogeneous components and dependent subsystems, the systems are assumed to consist of two groups of components whose lifetimes follow proportional hazard (PH) or proportional reversed hazard (PRH) models. We investigate the optimal allocation strategy by finding out the number $k$ of components coming from Group A in the up-series system. First, some sufficient conditions are provided in the sense of the usual stochastic order to compare the lifetimes of two-parallel–series systems with dependent subsystems, and we obtain the hazard rate and reversed hazard rate orders when two subsystems have independent lifetimes. Second, similar results are also obtained for two-series–parallel systems under certain conditions. Finally, we generalize the corresponding results to parallel–series and series–parallel systems with multiple subsystems in the viewpoint of the minimal path and the minimal cut sets, respectively. Some numerical examples are presented to illustrate the theoretical findings.


2020 ◽  
Vol 57 (3) ◽  
pp. 832-852
Author(s):  
Lu Li ◽  
Qinyu Wu ◽  
Tiantian Mao

AbstractWe investigate stochastic comparisons of parallel systems (corresponding to the largest-order statistics) with respect to the reversed hazard rate and likelihood ratio orders for the proportional reversed hazard rate (PRHR) model. As applications of the main results, we obtain the equivalent characterizations of stochastic comparisons with respect to the reversed hazard rate and likelihood rate orders for the exponentiated generalized gamma and exponentiated Pareto distributions. Our results recover and strengthen some recent results in the literature.


2012 ◽  
Vol 26 (3) ◽  
pp. 375-391 ◽  
Author(s):  
Baojun Du ◽  
Peng Zhao ◽  
N. Balakrishnan

In this paper, we study some stochastic comparisons of the maxima in two multiple-outlier geometric samples based on the likelihood ratio order, hazard rate order, and usual stochastic order. We establish a sufficient condition on parameter vectors for the likelihood ratio ordering to hold. For the special case whenn= 2, it is proved that thep-larger order between the two parameter vectors is equivalent to the hazard rate order as well as usual stochastic order between the two maxima. Some numerical examples are presented for illustrating the established results.


2013 ◽  
Vol 28 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Weiyong Ding ◽  
Gaofeng Da ◽  
Xiaohu Li

This paper carries out stochastic comparisons of series and parallel systems with independent and heterogeneous components in the sense of the hazard rate order, the reversed hazard rate order, and the likelihood ratio order. The main results extend and strengthen the corresponding ones by Misra and Misra [18] and by Ding, Zhang, and Zhao [8]. Meanwhile, the results on the hazard rate order of parallel systems and the reversed hazard order of series systems serve as nice supplements to Theorem 16.B.1 of Boland and Proschan [4] and Theorem 3.2 of Nanda and Shaked [20], respectively.


Sign in / Sign up

Export Citation Format

Share Document