gauss elimination
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 0)

2022 ◽  
Vol 26 (4) ◽  
pp. 559-572
Author(s):  
Ibrahim Alattar ◽  
Abdul Monem S. Rahma

This paper has been developed to compare encryption algorithms based on individual magic squares and discuss the advantages and disadvantages of each algorithm or method. Where some positions of the magic square are assigned to the key and the remaining positions are assigned to the message, then the rows, columns and diagonals are summed and these results are as ciphertext and in the process of decryption the equations are arranged and solved by Gauss elimination metod. All algorithms were applied to encrypte the text and images, as well as using both GF(P) and GF(28), and the speed and complexity were calculated. The speed of MS9 by using GF(P) is 15.09085 Millie Second, while by using GF(28) it will be 18.94268 Millie Second, and the complexity is the value of the ASCII code raised to the exponent of the number of message locations multiplied by the value of the prime number raised to the exponent of the number of key locations.


2022 ◽  
Vol 7 (4) ◽  
pp. 5431-5443
Author(s):  
Rohul Amin ◽  
◽  
Kamal Shah ◽  
Hijaz Ahmad ◽  
Abdul Hamid Ganie ◽  
...  

<abstract><p>In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations.</p></abstract>


Fractals ◽  
2021 ◽  
Author(s):  
ROHUL AMIN ◽  
HUSSAM ALRABAIAH ◽  
IBRAHIM MAHARIQ ◽  
ANWAR ZEB

In this paper, we develop a numerical method for the solutions of mixed type Volterra–Fredholm fractional integral equations (FIEs). The proposed algorithm is based on Haar wavelet collocation technique (HWCT). Under certain conditions, we prove the existence and uniqueness of the solution. Also, some stability results are given of Hyers–Ulam (H–U) type. With the help of the HWCT, the considered problem is transformed into a system of algebraic equations which is then solved for the required results by using Gauss elimination algorithm. Some numerical examples for convergence of the proposed technique are taken from the literature. Maximum absolute and root mean square errors are calculated for different collocation points (CPs). The results show that the HWCT is an effective method for solving FIEs. The convergence rate for different CPS is also calculated, which is nearly equal to 2.


2021 ◽  
Vol 10 (2) ◽  
pp. 67-77
Author(s):  
S. I. Abdelrahman ◽  
A. H. Hussein ◽  
A. E. A. Shaalan

Side lobe level reduction is one of the most critical research topics in antenna arrays beamforming as it mitigates the interfering and jamming signals. In this paper, a hybrid combination between the Genetic algorithm (GA) optimization technique and the gauss elimination (GE) equation solving technique is utilized for the introduction of the proposed GA/GE beamforming technique for linear antenna arrays. The proposed technique estimates the optimum excitation coefficients and the non-uniform inter-elements spacing for a specific side lobe (SL) cancellation without disturbing the half power beamwidth (HPBW) of the main beam. Different size Chebychev linear antenna arrays are taken as simulation targets. The simulation results revealed the effectiveness of the proposed technique


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hualing Wu ◽  
Rohul Amin ◽  
Asmatullah Khan ◽  
Shah Nazir ◽  
Sultan Ahmad

In this work, the Haar collocation scheme is used for the solution of the class of system of delay integral equations for heterogeneous data communication. The Haar functions are considered for the approximation of unknown function. By substituting collocation points and applying the Haar collocation technique to system of delay integral equations, we have obtained a linear system of equations. For the solution of this system, an algorithm is developed in MATLAB software. The method of Gauss elimination is utilized for the solution of this system. Finally, by using these coefficients, the solution at collocation points is obtained. The convergence of Haar technique is checked on some test problems.


2021 ◽  
Vol 23 (07) ◽  
pp. 723-733
Author(s):  
Khushbu Kumari ◽  
◽  
R K Poonia ◽  

Solving a system of linear equations (or linear systems or, also simultaneous equations) is a common situation in many scientific and technological problems. Many methods either analytical or numerical, have been developed to solve them so, in this paper, I will explain how to solve any arbitrary field using the different – different methods of the system of linear equation for this we need to define some concepts. Like a general method most used in linear algebra is the Gauss Elimination or variation of this sometimes they are referred as “direct methods “Basically it is an algorithm that transforms the system into an equivalent one but with a triangular matrix, thus allowing a simpler resolution, Other methods can be more effective in solving system of the linear equation like Gauss Elimination or Row Reduction, Gauss Jordan and Crammer’s rule, etc. So, in this paper I will explain this method by taking an example also, in this paper I will explain the Researcher’ works that how they explain different –different methods by taking different examples. And I worked on using these different methods in solving a single example, i.e. I will use these methods in an example. In this paper, I will explain the real-life application that how a System of Linear Equation is used in our daily life.


Author(s):  
Chandra Sen

An excellent research contribution was made by Sanjay and Adarsh in using Gauss Elimination Technique and AHA simplex method for solving multi-objective optimization (MOO) problems. The method was applied for solving MOO problems using Chandra Sen's technique and several other averaging techniques. The formulation of multi-objective function in the averaging techniques was not perfect. The example was also not appropriate.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sapna Pandit ◽  
R.C. Mittal

Purpose This paper aims to propose a novel approach based on uniform scale-3 Haar wavelets for unsteady state space fractional advection-dispersion partial differential equation which arises in complex network, fluid dynamics in porous media, biology, chemistry and biochemistry, electrode – electrolyte polarization, finance, system control, etc. Design/methodology/approach Scale-3 Haar wavelets are used to approximate the space and time variables. Scale-3 Haar wavelets converts the problems into linear system. After that Gauss elimination is used to find the wavelet coefficients. Findings A novel algorithm based on Haar wavelet for two-dimensional fractional partial differential equations is established. Error estimation has been derived by use of property of compactly supported orthonormality. The correctness and effectiveness of the theoretical arguments by numerical tests are confirmed. Originality/value Scale-3 Haar wavelets are used first time for these types of problems. Second, error analysis in new work in this direction.


Author(s):  
Sanjay Jain ◽  
Adarsh Mangal

In this research paper, an effort has been made to solve each linear objective function involved in the Multi-objective Linear Programming Problem (MOLPP) under consideration by AHA simplex algorithm and then the MOLPP is converted into a single LPP by using various techniques and then the solution of LPP thus formed is recovered by Gauss elimination technique. MOLPP is concerned with the linear programming problems of maximizing or minimizing, the linear objective function having more than one objective along with subject to a set of constraints having linear inequalities in nature. Modeling of Gauss elimination technique of inequalities is derived for numerical solution of linear programming problem by using concept of bounds. The method is quite useful because the calculations involved are simple as compared to other existing methods and takes least time. The same has been illustrated by a numerical example for each technique discussed here.


Sign in / Sign up

Export Citation Format

Share Document