scholarly journals Generalized Strongly Increasing Semigroups

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1370
Author(s):  
E. R. García Barroso ◽  
J. I. García-García ◽  
A. Vigneron-Tenorio

In this work, we present a new class of numerical semigroups called GSI-semigroups. We see the relations between them and other families of semigroups and we explicitly give their set of gaps. Moreover, an algorithm to obtain all the GSI-semigroups up to a given Frobenius number is provided and the realization of positive integers as Frobenius numbers of GSI-semigroups is studied.

2016 ◽  
Vol 146 (5) ◽  
pp. 1081-1090
Author(s):  
Aureliano M. Robles-Pérez ◽  
José Carlos Rosales

We study some questions on numerical semigroups of type 2. On the one hand, we investigate the relation between the genus and the Frobenius number. On the other hand, for two fixed positive integers g1, g2, we give necessary and sufficient conditions in order to have a numerical semigroup S such that {g1, g2} is the set of its pseudo-Frobenius numbers and, moreover, we explicitly build families of such numerical semigroups.


2017 ◽  
Vol 13 (05) ◽  
pp. 1335-1347 ◽  
Author(s):  
Ze Gu ◽  
Xilin Tang

Let [Formula: see text] be two positive integers such that [Formula: see text] and [Formula: see text] the numerical semigroup generated by [Formula: see text]. Then [Formula: see text] is the Thabit numerical semigroup introduced by J. C. Rosales, M. B. Branco and D. Torrão. In this paper, we give formulas for computing the Frobenius number, the genus and the embedding dimension of [Formula: see text].


2020 ◽  
Vol 30 (4) ◽  
pp. 257-264
Author(s):  
Ze Gu

AbstractLet b, n be two positive integers such that b ≥ 2, and S(b, n) be the numerical semigroup generated by $\begin{array}{} \{b^{n+1+i}+\frac{b^{n+i}-1}{b-1}\mid i\in\mathbb{N}\} \end{array}$. Applying two order relations, we give formulas for computing the embedding dimension, the Frobenius number, the type and the genus of S(b, n).


2011 ◽  
Vol 21 (07) ◽  
pp. 1217-1235 ◽  
Author(s):  
VÍCTOR BLANCO ◽  
PEDRO A. GARCÍA-SÁNCHEZ ◽  
JUSTO PUERTO

This paper presents a new methodology to compute the number of numerical semigroups of given genus or Frobenius number. We apply generating function tools to the bounded polyhedron that classifies the semigroups with given genus (or Frobenius number) and multiplicity. First, we give theoretical results about the polynomial-time complexity of counting these semigroups. We also illustrate the methodology analyzing the cases of multiplicity 3 and 4 where some formulas for the number of numerical semigroups for any genus and Frobenius number are obtained.


2015 ◽  
Vol 25 (06) ◽  
pp. 1043-1053 ◽  
Author(s):  
Francesco Strazzanti

Given two numerical semigroups S and T and a positive integer d, S is said to be one over d of T if S = {s ∈ ℕ | ds ∈ T} and in this case T is called a d-fold of S. We prove that the minimal genus of the d-folds of S is [Formula: see text], where g and f denote the genus and the Frobenius number of S. The case d = 2 is a problem proposed by Robles-Pérez, Rosales, and Vasco. Furthermore, we find the minimal genus of the symmetric doubles of S and study the particular case when S is almost symmetric. Finally, we study the Frobenius number of the quotient of some families of numerical semigroups.


2019 ◽  
Vol 18 (11) ◽  
pp. 1950217
Author(s):  
M. B. Branco ◽  
I. Ojeda ◽  
J. C. Rosales

We give two algorithmic procedures to compute the whole set of almost symmetric numerical semigroups with fixed Frobenius number and type, and the whole set of almost symmetric numerical semigroups with fixed Frobenius number. Our algorithms allow to compute the whole set of almost symmetric numerical semigroups with fixed Frobenius number with similar or even higher efficiency that the known ones. They have been implemented in the GAP [The GAP Group, GAP — Groups, Algorithms and Programming, Version 4.8.6; 2016, https://www.gap-system.org ] package NumericalSgps [M. Delgado and P. A. García-Sánchez and J. Morais, “numericalsgps”: A GAP package on numerical semigroups, https://github.com/gap-packages/numericalsgps ].


2019 ◽  
Vol 7 (1) ◽  
pp. 215-233
Author(s):  
Corina D. Constantinescu ◽  
Tomasz J. Kozubowski ◽  
Haoyu H. Qian

AbstractWe present basic properties and discuss potential insurance applications of a new class of probability distributions on positive integers with power law tails. The distributions in this class are zero-inflated discrete counterparts of the Pareto distribution. In particular, we obtain the probability of ruin in the compound binomial risk model where the claims are zero-inflated discrete Pareto distributed and correlated by mixture.


2017 ◽  
Vol 16 (11) ◽  
pp. 1750209 ◽  
Author(s):  
P. A. García-Sánchez ◽  
B. A. Heredia ◽  
H. İ. Karakaş ◽  
J. C. Rosales

We present procedures to calculate the set of Arf numerical semigroups with given genus, given conductor and given genus and conductor. We characterize the Kunz coordinates of an Arf numerical semigroup. We also describe Arf numerical semigroups with fixed Frobenius number and multiplicity up to 7.


Sign in / Sign up

Export Citation Format

Share Document