frobenius number
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 15)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 8 ◽  
pp. 60-65
Author(s):  
Imdat Kara ◽  
Halil Ibrahim Karakas

The Frobenius number of a set of relatively prime positive integers α1,α2,…,αn such that α1< α2< …< αn, is the largest integer that can not be written as a nonnegative integer linear combination of the given set. Finding the Frobenius number is known as the Frobenius problem, which is also named as the coin exchange problem or the postage stamp problem. This problem is closely related with the equality constrained integer knapsack problem. It is known that this problem is NP-hard. Extensive research has been conducted for finding the Frobenius number of a given set of positive integers. An exact formula exists for the case n=2 and various formulas have been derived for all special cases of n = 3. Many algorithms have been proposed for n≥4. As far as we are aware, there does not exist any integer programming approach for this problem which is the main motivation of this paper. We present four integer linear programming formulations about the Frobenius number of a given set of positive integers. Our first formulation is used to check if a given positive integer is the Frobenius number of a given set of positive integers. The second formulation aims at finding the Frobenius number directly. The third formulation involves the residue classes with respect to the least member of the given set of positive integers, where a residue table is computed comprising all values modulo that least member, and the Frobenius number is obtained from there. Based on the same approach underlying the third formulation, we propose our fourth formulation which produces the Frobenius number directly. We demonstrate how to use our formulations with several examples. For illustrative purposes, some computa-tional analysis is also presented.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Aureliano M. Robles-Pérez ◽  
José Carlos Rosales

AbstractWe study how certain invariants of numerical semigroups relate to the number of second kind gaps. Furthermore, given two fixed non-negative integers F and k, we provide an algorithm to compute all the numerical semigroups whose Frobenius number is F and which have exactly k second kind gaps.


2021 ◽  
Vol 78 (2) ◽  
pp. 147-167
Author(s):  
Manuel B. Branco ◽  
Ignacio Ojeda ◽  
José Carlos Rosales

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1370
Author(s):  
E. R. García Barroso ◽  
J. I. García-García ◽  
A. Vigneron-Tenorio

In this work, we present a new class of numerical semigroups called GSI-semigroups. We see the relations between them and other families of semigroups and we explicitly give their set of gaps. Moreover, an algorithm to obtain all the GSI-semigroups up to a given Frobenius number is provided and the realization of positive integers as Frobenius numbers of GSI-semigroups is studied.


Author(s):  
Deepesh Singhal

A numerical semigroup is a sub-semigroup of the natural numbers that has a finite complement. Some of the key properties of a numerical semigroup are its Frobenius number [Formula: see text], genus [Formula: see text] and type [Formula: see text]. It is known that for any numerical semigroup [Formula: see text]. Numerical semigroups with [Formula: see text] are called almost symmetric, we introduce a new property that characterizes them. We give an explicit characterization of numerical semigroups with [Formula: see text]. We show that for a fixed [Formula: see text] the number of numerical semigroups with Frobenius number [Formula: see text] and type [Formula: see text] is eventually constant for large [Formula: see text]. The number of numerical semigroups with genus [Formula: see text] and type [Formula: see text] is also eventually constant for large [Formula: see text].


Author(s):  
P. A. GARCÍA‐SÁNCHEZ ◽  
D. LLENA ◽  
I. OJEDA

Abstract In this paper, we study a family of binomial ideals defining monomial curves in the n-dimensional affine space determined by n hypersurfaces of the form $x_i^{c_i} - x_1^{u_{i1}} \cdots x_n^{u_{1n}}$ in $\Bbbk [x_1, \ldots , x_n]$ with $u_{ii} = 0, \ i\in \{ 1, \ldots , n\}$ . We prove that the monomial curves in that family are set-theoretic complete intersections. Moreover, if the monomial curve is irreducible, we compute some invariants such as genus, type and Frobenius number of the corresponding numerical semigroup. We also describe a method to produce set-theoretic complete intersection semigroup ideals of arbitrary large height.


Sign in / Sign up

Export Citation Format

Share Document