scholarly journals On Little’s Formula in Multiphase Queues

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2282
Author(s):  
Saulius Minkevičius ◽  
Igor Katin ◽  
Joana Katina ◽  
Irina Vinogradova-Zinkevič

The structure of this work in the field of queuing theory consists of two stages. The first stage presents Little’s Law in Multiphase Systems (MSs). To obtain this result, the Strong Law of Large Numbers (SLLN)-type theorems for the most important MS probability characteristics (i.e., queue length of jobs and virtual waiting time of a job) are proven. The next stage of the work is to verify the result obtained in the first stage.

2012 ◽  
Vol 17 (3) ◽  
pp. 327-342 ◽  
Author(s):  
Saulius Minkevičius ◽  
Stasys Steišūnas

The object of this research in the queueing theory is theorems about the functional strong laws of large numbers (FSLLN) under the conditions of heavy traffic in an open queueing network (OQN). The FSLLN is known as a fluid limit or fluid approximation. In this paper, FSLLN are proved for the values of important probabilistic characteristics of the OQN investigated as well as the virtual waiting time of a customer and the queue length of customers. As applications of the proved theorems laws of Little in OQN are presented.


2003 ◽  
Vol 7 (1) ◽  
pp. 11-28
Author(s):  
O. Moeschlin ◽  
C. Poppinga

The paper discusses the question of the optimal control of an unsymmetric bottleneck system with Poisson arrival processes having the minimization of the mean individual waiting time as objective. The setup allows the straightforward generalization to more complicated forms of traffic organization. The notion of the mean individual waiting time is based on a theorem of the Little type, which is derived by a strong law of large numbers. The proof makes use of McNeil's formula, which connects the expected total waiting time with the expected queue length.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xiaochen Ma ◽  
Qunying Wu

In this article, we research some conditions for strong law of large numbers (SLLNs) for weighted sums of extended negatively dependent (END) random variables under sublinear expectation space. Our consequences contain the Kolmogorov strong law of large numbers and the Marcinkiewicz strong law of large numbers for weighted sums of extended negatively dependent random variables. Furthermore, our results extend strong law of large numbers for some sequences of random variables from the traditional probability space to the sublinear expectation space context.


1973 ◽  
Vol 5 (01) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


Sign in / Sign up

Export Citation Format

Share Document