scholarly journals Laws of Little in an open queueing network

2012 ◽  
Vol 17 (3) ◽  
pp. 327-342 ◽  
Author(s):  
Saulius Minkevičius ◽  
Stasys Steišūnas

The object of this research in the queueing theory is theorems about the functional strong laws of large numbers (FSLLN) under the conditions of heavy traffic in an open queueing network (OQN). The FSLLN is known as a fluid limit or fluid approximation. In this paper, FSLLN are proved for the values of important probabilistic characteristics of the OQN investigated as well as the virtual waiting time of a customer and the queue length of customers. As applications of the proved theorems laws of Little in OQN are presented.

Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2282
Author(s):  
Saulius Minkevičius ◽  
Igor Katin ◽  
Joana Katina ◽  
Irina Vinogradova-Zinkevič

The structure of this work in the field of queuing theory consists of two stages. The first stage presents Little’s Law in Multiphase Systems (MSs). To obtain this result, the Strong Law of Large Numbers (SLLN)-type theorems for the most important MS probability characteristics (i.e., queue length of jobs and virtual waiting time of a job) are proven. The next stage of the work is to verify the result obtained in the first stage.


1973 ◽  
Vol 5 (01) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


2002 ◽  
Vol 39 (03) ◽  
pp. 619-629 ◽  
Author(s):  
Gang Uk Hwang ◽  
Bong Dae Choi ◽  
Jae-Kyoon Kim

We consider a discrete-time queueing system with the discrete autoregressive process of order 1 (DAR(1)) as an input process and obtain the actual waiting time distribution and the virtual waiting time distribution. As shown in the analysis, our approach provides a natural numerical algorithm to compute the waiting time distributions, based on the theory of the GI/G/1 queue, and consequently we can easily investigate the effect of the parameters of the DAR(1) on the waiting time distributions. We also derive a simple approximation of the asymptotic decay rate of the tail probabilities for the virtual waiting time in the heavy traffic case.


1992 ◽  
Vol 24 (01) ◽  
pp. 172-201 ◽  
Author(s):  
Søren Asmussen ◽  
Reuven Y. Rubinstein

This paper studies computer simulation methods for estimating the sensitivities (gradient, Hessian etc.) of the expected steady-state performance of a queueing model with respect to the vector of parameters of the underlying distribution (an example is the gradient of the expected steady-state waiting time of a customer at a particular node in a queueing network with respect to its service rate). It is shown that such a sensitivity can be represented as the covariance between two processes, the standard output process (say the waiting time process) and what we call the score function process which is based on the score function. Simulation procedures based upon such representations are discussed, and in particular a control variate method is presented. The estimators and the score function process are then studied under heavy traffic conditions. The score function process, when properly normalized, is shown to have a heavy traffic limit involving a certain variant of two-dimensional Brownian motion for which we describe the stationary distribution. From this, heavy traffic (diffusion) approximations for the variance constants in the large sample theory can be computed and are used as a basis for comparing different simulation estimators. Finally, the theory is supported by numerical results.


1989 ◽  
Vol 21 (02) ◽  
pp. 485-487 ◽  
Author(s):  
G. I. Falin

An analytic approach to the diffusion approximation in queueing due to Burman (1979) is applied to the M(t)/G/1/∞ queueing system with periodic Poisson arrivals. We show that under heavy traffic the virtual waiting time process can be approximated by a certain Wiener process with reflecting barrier at 0.


1973 ◽  
Vol 5 (1) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


1971 ◽  
Vol 8 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Sreekantan S. Nair

Avi-Itzhak, Maxwell and Miller (1965) studied a queueing model with a single server serving two service units with alternating priority. Their model explored the possibility of having the alternating priority model treated in this paper with a single server serving alternately between two service units in tandem.Here we study the distribution of busy period, virtual waiting time and queue length and their limiting behavior.


1977 ◽  
Vol 9 (01) ◽  
pp. 169-186 ◽  
Author(s):  
Teunis J. Ott

Let X(t) be the virtual waiting-time process of a stable M/G/1 queue. Let R(t) be the covariance function of the stationary process X(t), B(t) the busy-period distribution of X(t); and let E(t) = P{X(t) = 0|X(0) = 0}. For X(t) some heavy-traffic results are given, among which are limiting expressions for R(t) and its derivatives and for B(t) and E(t). These results are used to find the covariance function of stationary Brownian motion on [0, ∞).


1973 ◽  
Vol 5 (01) ◽  
pp. 170-182 ◽  
Author(s):  
J. H. A. De Smit

The general theory for the many server queue due to Pollaczek (1961) and generalized by the author (de Smit (1973)) is applied to the system with exponential service times. In this way many explicit results are obtained for the distributions of characteristic quantities, such as the actual waiting time, the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. Most of these results are new, even for the special case of Poisson arrivals.


1973 ◽  
Vol 5 (1) ◽  
pp. 153-169 ◽  
Author(s):  
J. H. A. De Smit

Pollaczek's theory for the many server queue is generalized and extended. Pollaczek (1961) found the distribution of the actual waiting times in the model G/G/s as a solution of a set of integral equations. We give a somewhat more general set of integral equations from which the joint distribution of the actual waiting time and some other random variables may be found. With this joint distribution we can obtain distributions of a number of characteristic quantities, such as the virtual waiting time, the queue length, the number of busy servers, the busy period and the busy cycle. For a wide class of many server queues the formal expressions may lead to explicit results.


Sign in / Sign up

Export Citation Format

Share Document